Chapter 5. Principles of Convection

5.1 Introduction

So far we considered heat transfer by conduction in solids in which no
motion of the medium was involved. In conduction problems, the
convection entered the analysis merely as a boundary condition in the
form of a heat transfer coefficient. Our objective in this and the following
chapters on convection is to establish the physical and mathematical basis
for the understanding of convective transport and to reveal various heat
transfer correlations.

The analysis of convection is complicated because the fluid motion
affects the pressure drop, the drag force, and the heat transfer. To
determine the drag force, or the pressure drop, the velocity field in the
immediate vicinity of the surface must be known. To determine the heat
transfer, the velocity distribution in the flow also is needed because the
velocity enters the energy equation: the solution of the energy equation
yields the temperature distribution in the flow field

In this chapter, I present a coherent view of the subject of convection
in order to provide a firm basis for application. Basic concepts associated
with flow over a body, flow inside a duct, and turbulence are discussed.
The role of temperature and velocity distributions in the flow on heat
transfer and drag force is illustrated.

The velocity and temperature distributions are determined from the
solution of the momentum and energy equation, respectively. Therefore,
such equations are presented for the case of two—dimensional,
constant-property, incompressible flow in rectangular and cylindrical
coordinate systems. Finally, the physical significance of dimensionless

parameters is discussed, and the boundary layer equations are presented.
b-2 Viscous Flow
— Flow over a Body

When a fluid flows over a body, the velocity and temperature
distributions at the immediate vicinity of the surface strongly influence



the heat transfer by convection. The boundary layer concept is frequently
introduced to model the velocity and temperature fields near the solid
surface in order to simplify the analysis of convective heat transfer. So
we are concerned with two different kinds of boundary layers, the
velocity boundary layer and the thermal boundary layer.

- Velocity Boundary Layer over a Flat Plate
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The fluid at the leading edge of the plate (at x=0) has a velocity U,

which is parallel to the plate surface. As the fluid moves in the
x-direction along the plate, those fluid particles that make contact with
the surface become zero velocity (i.e., no slip condition at the wall). The
region of flow which develops from the leading edge of the plate in
which the effects of viscosity are observed is called the boundary layer.
Therefore, starting from the plate surface there will be a retardation in
the x-direction component of the velocity u. That is,z=0 at y = 0. The
retardation effect is reduced when the fluid is moving away from the
plate surfaces. At distances sufficiently far from the plate the retardation
effect is considered zero.
u— U, asy—>oo
Some arbitrary point is used to designate the y = 6 (x) position where
the boundary layer ends. This point i1s usually chosen as a distance from
the surface of the plate where « equals to 99% of U, that is,
u =0.99 U,

Initially, the boundary layer development is laminar (the laminar flow



remains orderly and fluid particles move along streamlines), but at some
critical distance from the leading edge, depending on the flow field and
fluid properties, small disturbances in the flow begin to become amplified,
and a transient process takes place until the flow becomes turbulent. The
turbulent flow region may be pictured as a random churning action with
chunks of fluid moving to and fro in all directions.
The Reynolds number is defined for the flow over a flat plate as
U,x

14

Re, =

T

U, : freestream velocity (m/s), v: kinematic viscosity of the fluid (m?%s)

x. distance from the leading edge of the plate (m)

The Reynolds number is a measure of the relative magnitude of inertial
force(convection) to viscous diffusion or the ratio of the time for viscous

diffusion to occur to the time for convection to occur.

Le

Us
(Re,),= —) = 5%10° (a critical Reynolds number)

(Re,). value is strongly dependent on the surface roughness, the turbulent

level of the freestream, and the heat transfer(wall temperature).
10° <(Re,) =< 4x10°

(Rex)e= 10° for flows with very large disturbances in the freestream and
(Rex)e= 4x10° for flows which are free from disturbances

In the turbulent boundary layer next to the wall, there is a very thin
layer, called the viscous (or laminar) sublayer, where the flow retains its
viscous (or laminar) flow character. Adjacent to the viscous sublayer is a
region called the buffer layer (or overlap layer) in which there is
fine—-grained turbulence, and the mean axial velocity rapidly increases
with the distance from the wall. The buffer layer is followed by the
turbulent layer in which there is large scale turbulence, and the velocity
changes relatively little with the distance from the wall.

For the flow over a flat plate, the flow field can be separated into two
distinct regions (1) boundary layer region : the axial velocity component



u(z,y) varies rapidly with the distance y from the plate. Hence the
velocity gradients and the shear stress are considered large. (2) potential
flow region, the region outside the boundary layer where the velocity

gradients and shear stresses are negligible.

— Velocity Boundary Layer along a Curved Body and Flow Separation

fwvﬂ’wy ("7&'/

The above figure shows the boundary layer concept for flow over a
curved body. In this case, the x coordinate is measured along the curved
surface of the body. By starting from the stagnation point and at each
location, the y coordinate is measured normal to the surface of the body.
The freestream velocity U,(x) varies with distance along the curved
surface. The boundary layer concept for flow over a flat plate also
applies to this particular situation. The boundary layer thickness 6 (x)
increases with the distance = along the surface. However, because of the

curvature of the surface, after some distance =x, the velocity profile

. ) ) d
u(z,y) exhibits a point of separation d—Z] =0| at the wall surface.
y=0
82u
Beyond the point of inflection (?= 0), the flow reversal takes place
Y

and the boundary layer is said to be detached from the wall surface
(other known as "flow separation”). Beyond the point of flow reversal,
the flow patterns are very complicated and the boundary layer analysis is

no longer applicable.
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Figure 15-20 Subcritical flow over a sphere is shown at Re = 15,000. Laminar
separation occurs forward of the equator. Photograph courtesy of H. Werl¢, ONERA,
Catillon, France.

Figure 15-21 Supercritical flow at Re = 30,000. Normally this flow is subcritical, but
a small trip wire has induced transition to a turbulent boundary layer. Separation is
now downstream of the equator, and the wake is smaller. Photograph from ONERA by
H. Werlé (1980).
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- Velocity Boundary Layer in a Circular duct
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Fig. 4 Developing velocity profiles and pressure changes in the entrance of a duct flow.

I
i
— Ug,
L Vay oy
LR Y

(a)

F Vay —=
— Ve

T T .

l/. = #c € enterline

(mdx; e ) velke cite
Viv: #he average velecty

Fig. =2 Comparison of laminar and
turbulent pipe-flow velocity profiles for the
same volumetric flow rate: (a) laminar
flow; (b) turbulent flow.
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Table. U,/ U, for turbulent flow in a circular duct

U:w _ -
7= (1+1.33/F )" f = 0.316 Re, “for [4000 < Re,, < 10°]
Rep 4000 10* 10° 10° 107 10°
U
i 0.79 0.811 0.849 0.875 0.893 0.907
Figures in the previous page show a viscous flow in a circular duct.
The flow 1s constrained by the boundary walls, and the viscous effects



will grow and meet and permeate the entire flow. There is an entrance
region where a nearly inviscid upstream flow converges and enters the
tube. Viscous boundary layers grow downstream, retarding the axial flow

uw(r,z) at the wall and thereby accelerating the center-core flow to
maintain the incompressible continuity requirement. V= / uwdA = const

At a finite distance from the entrance the boundary layers merge and
the inviscid core disappears. The tube flow is then entirely viscous, and
the axial velocity adjusts slightly further until at * = Z,. It no longer

changes with = and is said to be "fully developed”, v =~ u(r) only.

Downstream of = = L, the velocity profile is constant, the wall shear

stress is constant, and the pressure drops linearly with z.

As 1illustrated in Figure, the velocity profile for turbulent flow in the
pipe is markedly different from that for laminar flow. The two profiles
are for the same volumetric flow rate. We see that the parabolic velocity
profile of laminar flow has a larger value for the maximum velocity( U,),
the velocity at the centerline, but a lower velocity gradient at wall, that

1S, less shear stress at the wall according to the shear stress equation,

. epi
— dy wall(y=0)

Conversely, for turbulent flow, the velocity increases rapidly with
distance from the wall from the no-slip condition at the wall (e,
U,_r=0). Thus, a turbulent pipe flow produces relatively large shear
stress. The turbulent shear stress can be hundreds of times greater
than the laminar shear stress due to the mixing motion (a sliding of the
one particle layer over another) of the fluid. Furthermore, with the large
number of random particle fluctuations present in a turbulent flow, there
i1s a tendency toward mixing of the fluild and a more uniform velocity
profile. The interchange of momentum between faster- and slower-
moving particles tends to "even out” the velocity profile. Thus, for
turbulent pipe flow, the time-averaged mean velocity plotted versus
radius might appear much more uniform, except very near the
wall(laminar sublayer), where the large velocity gradient produces
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relatively large shear forces and a correspondingly large head loss
(pressure loss).

Another way of looking at the difference between laminar and turbulent
flows is to consider what happens when a small disturbance is introduced
into a flow. If the flow is laminar, a small disturbance is damped out by
viscous forces. If the disturbance cannot be damped out, but continues to
grow and affect the entire stream, we have turbulent flow.

Even in turbulent pipe flow, with the great majority of the flow
characterized by rough, irregular motions, there will always be a thin
layer of smooth laminar flow near a wall, for the particle fluctuations
must die out near a boundary. This thin layer is called laminar sublayer
(or viscous sublayer). The thickness of this layer depends on the degree
of turbulence of the main stream - the more turbulent the flow, the
thinner the sublayer. In any case, the thickness of this layer is only a
very small fraction of the pipe diameter.

In a pipe flow, the Reynolds number is again used as a criterion for
laminar and turbulent flow. The generally accepted value for the

transition from laminar to turbulent flow is

av

(Rep). = = 2,300

The transition Reynolds number may change depending on the pipe
roughness and smoothness of the flow as follows:

2,000 < (Rep), < 4,000

However, the actual value must depend to a certain extent on the
magnitude of the disturbances introduced into the flow by such factors as
the pipe inlet, pipe bends, and extraneous vibrations due to the proximity
of pumping machinery.

U D pU,D  am 4V

av

(Note) Rep= . D~ 7D

where, m : mass flow rate (kg/s), V : volume flow rate (m?/s)


admin
강조

admin
강조

admin
강조


m

o

Mass velocity (kg/m®-s), G = o
The entrance length, L, required to attain fully developed flow is

dependent on the type of flow. For laminar flow, the required entrance

Le
length is given approximately by: o = 0.057 Re;, — Laminar Flow
Thus, the maximum laminar entrance length, at (Rep),. = 2,300, is
L, = 131D, which is the longest development length possible. In turbulent
flow the boundary layers grow much faster, and L, is relatively shorter

according to the approximation

— =44 (Rep)Y®  or 1.359 (Re,)"* — Turbulent Flow

The usual entrance length for turbulent flow is between 25 and 60 pipe
diameters, the value depending on the wall roughness and inlet shape.
For instance, a square-edged opening requires shorter entrance length

than a rounded-edged opening does.

Some Computed Entrance Lengths for Turbulent Flow

Re,,

4000

10

10°

10°

107

108

L,/D

18

20

30

44

65

95
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- TE2] (Unit)
1ft = 12 inch, linch = 2.54cm, 1ft = 30.48cm, Imile = 1.6km

-FAYE (Weight Density) or H|S & (Specific Weight) : y (Gamma)

k
y=p-g (N/m> lb;/ft°) = —.—= P— = (22| HISE : 9800 N/m?, 62.4 1b./ft3)

-H|F (Specific Gravity) : §

Syas = —29% _ (Of7|0Y{M STD at 17]2,20°C)  Stia =
Pair at STD

pliq

pwater at STD

-2 A (Weight) : W

1lb; accelerates 32 lbm of mass 1ft/s* = 1lb; = 32 lbm;ft
W=F o Of 2|5tH 1ib,, weighs 1lb, = bt - 11b,

327p, 57



-4
Tkg weighs 9.8N or 1kg weighs 1kg,

1kg - 9.8m/s? 1kg - 9.8m/s?
W:mg: gk / = 9.8N or J ¥ / = 1kg;
N - s2 T kgs-s®

-0 L4 X] B! Power

X : & x HZ| = N-m = Joule (J), Power (AZHY

-

lbft=Btu, 11b;=4.48N, 1Btu=1,055J 1Btu/hr=293W

A

1 lb,, = 0.454kg, 1 slug =32 Ib,,

). J/s= Watt (W)



5-3 | INVISCID FLOW

Although noreal fluid isinviscid, in someinstancesthefluid may betreated assuch, anditis
worthwhileto present some of the equationsthat apply in these circumstances. For example,
in the flat-plate problem discussed above, the flow at a sufficiently large distance from the
plate will behave as a nonviscous flow system. The reason for this behavior is that the
velocity gradients normal to the flow direction are very small, and hence the viscous-shear
forces are small.

If a balance of forces is made on an element of incompressible fluid and these forces
are set equal to the change in momentum of the fluid element, the Bernoulli equation for
flow aong a streamline results:

2
L + }V— = const [5-74]
P28
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CHAPTERS5 Principles of Convection

or, in differential form,
dp n Vdv

P 8c

0 [5-7b]

where

o = fluid density, kg/m®
p = pressure at particular point in flow, Pa
V = velocity of flow at that point, m/s

The Bernoulli equation is sometimes considered an energy equation because the V2/2g.
term represents kinetic energy and the pressure represents potential energy; however, it
must be remembered that these terms are derived on the basis of adynamic analysis, so that
the eguation is fundamentally a dynamic equation. In fact, the concept of kinetic energy is
based on a dynamic analysis.

When the fluid is compressible, an energy equation must be written that will take into
account changes in internal thermal energy of the system and the corresponding changes
in temperature. For a one-dimensional flow system this equation is the steady-flow energy
equation for a control volume,

1 1
V24 Q=ip4 ——V2+ Wk [5-8]

i1+
28 28

where i isthe enthalpy defined by
i=e+ pv [5-9]

and where

e = internal energy
Q = heat added to control volume

Wk = net external work done in the process
v = specific volume of fluid

(The symboal i is used to denote the enthal py instead of the customary 4 to avoid confusion
withtheheat-transfer coefficient.) The subscripts1 and 2 refer to entranceand exit conditions
to the control volume. To calculate pressure drop in compressible flow, it is necessary to
specify the equation of state of the fluid, for example, for an ideal gas,

p=pRT Ae=cyAT Ai=cp,AT
The gas constant for a particular gasis given in terms of the universal gas constant 9t as

R=—
M

where M is the molecular weight and )t = 8314.5 J/kg - mol - K. For air, the appropriate
ideal-gas properties are

Rar =287 J/kg-K  cpair =1.005kJ/kg-°C ¢y 4r =0.718 kJ/kg- °C
To solve a particular problem, we must also specify the process. For example, reversible

adiabatic flow through anozzle yields the following familiar expressions relating the prop-
erties at some point in the flow to the Mach number and the stagnation properties, i.e., the

219
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5-3 Inviscid Flow

properties where the velocity is zero:

—=14+—M
T + 2

-1 v/(y=1)
po _ <1+ V_Mz)
p 2

-1 1/(y-1)
o 2

where
To, po, po = Stagnation properties
y = ratio of specific heats ¢, /cy
M = Mach number
|4
M=—
a

where a isthe local velocity of sound, which may be calculated from
a=+/yg-RT [5-10]
for an ideal gas.” For air behaving as an ideal gas this equation reduces to
a=20.045/T m/s [5-11]

where T isin degrees Kelvin.
EXAMPLE 5-1 Water Flow in a Diffuser

Waeter at 20°C flows at 8 kg/s through the diffuser arrangement shown in Figure Example 5-1. The
diameter at section 1 is 3.0 cm, and the diameter at section 2 is 7.0 cm. Determine the increase in
static pressure between sections 1 and 2. Assume frictionless flow.

Figure Example 5-1

Flow

1 2

B Solution
The flow cross-sectional areas are

_ 7d?  7(0.03)2

Ap=—1= =7.069 x 10~* m?
4 4
nd3 0.07)2
A2=Tz=n( . ) 3848 103 m?

TThe isentropic flow formulas are derived in Reference 7, p. 629.
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CHAPTERS5 Principles of Convection

The density of water at 20°C is 1000 kg/m3, and so we may calculate the velocities from the
mass-continuity relation

m
u=—
PA
8.0
= =11.32m/s [37.1ft/g]
(1000)(7.069 x 10~—4)
u 8.0 =2079m/s [6.82ft/s]

" (1000)(3.848 x 10-3)
The pressure difference is obtained from the Bernoulli equation (5-7a):

pP2—pr1
p

p2—p1= "P0111327 ~ (2079

1 2 2
= —(u7q—uj)
2gc e e

=61.91kPa [8.98Ib/in? abs]

| sentropic Expansion of Air EXAMPLE 5-2

Air at 300°C and 0.7 MPa pressure is expanded isentropically from a tank until the velocity is
300 m/s. Determine the static temperature, pressure, and Mach number of the air at the high-
velocity condition. y = 1.4 for air.

B Solution
We may write the steady-flow energy equation as
2
u
. . 2
11=1i2+ —
2gc

because the initial velocity is small and the processis adiabatic. In terms of temperature,

u
Cp(Tl —17) = g
(300)2
1005) (300 — 75) =
(1005)( 2) 210

To=255.2°C=5282K [491.4°F]

We may calculate the pressure from the isentropic relation

P2 (T2>V/(V1)
p1 \T1
528.2

BI5)
po=(0.7) <ﬁ> =0.526 MPa [76.31b/in? abs]

The velocity of sound at condition 2 is

ap = (20.045)(528.2)/2 = 460.7 m/s  [1511 ft/s]

s0 that the Mach number is
us 300
MZ = —_—=
ap  460.7

=0.651

221



5-4 Laminar Boundary Layer on a Flat Plate

- Conservation of mass (or continuity Equation)

Figure. Elemental control volume for momentum balance and mass
balance on laminar boundary layer.

Examine an elemental control volume (dxdydz) in the shape of a

rectangular parallel pipe fixed in = y z. Showing the inlet and outlet
mass flows on the x faces.

dy

pudydz

0
[pu + %(pu) dr]dydz

|

(Note) If pul, (mass velocity on the left face) is known,pu), (mass
velocity on the right face) can be expressed as a Taylor series about

point x=0 and retaining only first—order differentials.

e 0%pu)y da®
a o 2!

o
or
2(pu)
ox

PU]QZPU]1+ (PU)

u + dx

_13_



. The net rate of mass flow through x faces is : %(pu) dxdydz

Likely, for y and z faces
%y (pv) drdydz, % (pw) dxdydz, respectively.

(Note) : u,v, w are x,y, and z component of velocity, respectively.

Thus, the net rate of mass outflux through the control surface
(boundary of the control volume) is :

0 0 0 -
[ F (pw) + 3y (pv) + 32 (pw)]dxdydz (1)
and the rate of decrease of mass inside control volume is,

_ 9 - _9 gwdz
07 (pdedyde) = — %5 dedydz (2)

Equate (1) with (2) and cancel out drxdydz
ap

%(pu) + %(DU) + %(pw) =-5 — (3)

(differential continuity equation)

To simplify the analysis for the boundary layer we assume the followings
@D The fluid is incompressible, constant-property and Newtonian fluid
® The flow is steady and two-dimensional

ou ov
Eq. (3) reduces to o + i 0o —- (4)

where, v = u(z,y), v =v(z,y)
Continuity equation in rectangular coordinates for the steady,

two—dimensional flow of an incompressible constant—property,
Newtonian fluid.

_14_



In the cylindrical coordinate system, the continuity equation for the
steady, two-dimensional flow of an incompressible constant—property,

Newtonian fluid is

1 a(rv) +8_u

r or 0z

=0

where, u = ulr,z) — z direction velocity, v = v(r,z) — r direction velocity

- Conservation of Momentum (Momentum Equation)

We use the same elemental control volume (dxdydz) as for the
derivation of the continuity equation

The momentum equation is derived from Newton's second law of
motion, which states that mass times the acceleration in a given direction
is proportional to the external forces acting on the body in the same
direction.

—

- - av
F: — _
ma = pv—

The external forces acting on a volume element consist of the body force
(F,) and the surface forces( F,) ;

F=F+F
@O F, : Acting on the material inside the control volume (the weight due

to an action of gravity - pdrdydzg)
@ F, : Acting on the control surface (due to hydrostatic pressure and

viscous shear stresses)

% Hydrostatic pressure gives rise to a driving action to cause the fluid

_15_



to flow

¥ Viscous shear stresses stem from the motion of fluid.

y L Yx
i
lﬁ— dy a‘f
T L___J_=—=9— XX
hES A= dz Tat dx i
dx
X
at
2%
z sz+ aZ Tyx

where, 7;; is the value of shear stress acting on a plane whose normal is

parallel to the i-direction and the stress itself is parallel to the J

—-direction.

In order to simplify the analysis we again assume:

(D There are no pressure variations in the direction perpendicular to the
flat plate

@ The fluid is incompressible and the flow is steady, two-dimensional

@ The viscosity is constant

@ Viscous-shear forces in the y-direction are negligible

® Only z-direction momentum is evaluated because the forces considered

in the analysis are those in the x-—direction
Now, let’s consider the external forces first.

The body force is assumed to be negligibly small : F,) =0

The net surface forces in the x—direction are as follows;
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Fyy = (14 + a;xxx dx) dydz — T, dydz + (1, + i;yﬂ dy) dxdz — 1, dxdz
+ (1, + a;zzx dz) dredy — T . dxdy — (6)
L™ 01, 81”)
= ( o + 3y + oz dxdydz

o . dv .

The x-direction acceleration of pv o in Eqg (5) becomes

du ou ou ou ou

PV = pdxdydz [E + U + va—y + wg} (7)

ou ou
= pdxdydz U + va—y)
Now, equate (6) and (7)
37—E1 67—y:r ( ou Bu)
=plu— +v—
ox oY ox oY
ou ou ov
= —p+2u— = =pul— + —
where, 7, D g Tw Ty M(ay ax)
Tzr_TTz::u(a_u +a_w) -
v 0z ox
0 ou 0 ou ov ou ou
Ilept 2 |+ =+ | = plu e o
Then, ox ( p H ox ) oy (,u oy ox ) p(u ox v oy )
2 2
ou ou op o"u o™u
- - _ L +
- p(u ox T 9y ) ox ax” ay” ®

= the x—momentum equation for the steady, 2-dimensional laminar

flow of an incompressible fluid

For the boundary layer flow with constant properties, p=p(z) only and

2 2
o u o u . .
e << o (because the boundary layer & is very thin)
€ Yy
ou ou dp 8%
— tvo—|=———+pu—-F EE—
P\ oz 77 oy ) dx o> ©)

= the x—-momentum equation of the laminar boundary layer

For the boundary flow, the equivalent of the momentum equation (8) in
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the two-dimensional (7, z) cylindrical coordinate system is ;

oy [
dx +’u(r dr

ou
z-momentum ; p v—r +u—

. ) ) d
The momentum equation (9) contains the pressure-gradient term ﬁ

The pressure p(x) is imposed upon the boundary layer from the external
free-stream U.(x) outside the boundary layer, where x is the coordinate
parallel to the wall (flat plate or curved surface body). The pressure p(z)

is related to U,(x) by Bernoulli’s equation.
Ulz)?,
P(z) n

P 2
respect to x to obtain the following.

= (C = take a derivative of this equation with

(10)

Eq. (10) relates the pressure-gradient term to the external stream’s

velocity U, (x), which is assumed to be available from the solution of the

d
potential flow (an inviscid outer flow). Thus, ﬁ term in Eq. (9) is a

known quantity. In the case of flow over a flat plate with uniform

) d o .
free-stream velocity U, then ﬁ =0, because %(x) in Eq. (10)

becomes zero. Therefore, the momentum boundary equation for flow over
a flat plate becomes;

— Laminar Boundary Layer Thickness on a Flat Plate
By making a momentum-and—force balance on the control volume bounded

by the planes 1-A, 2-A, A-A, and the solid wall, the Von Karman
integral boundary layer equation is obtained as

_18_



ou d 0
—| =n=p | (U,—wudy —— (12)
Moyl s Par J y

= Von Karman momentum integral approximation

Fig. 5-5 Elementalcontrolvol-
ume for integral momentum an-
alysis of laminar boundary
layer.

If the velocity profile, # 1is known, the appropriate function could be
inserted into Eg. (12) to obtain an expression for the boundary layer
thickness. For an approximate analysis, we write down some conditions
which the velocity function must satisfy ;

DO u=0at y=0

@ u=U,at y=9

ou
® a—y—Oaty—cS

2

@ for a constant pressure cor1d1t1on—(9 > = 0at y=0 from Eq. (11) since
Yy

u=v=0 at y=0 (no slip condition)

The simplest function that satisfies these four conditions 1s a

third-degree polynomial approximation.
ulz,y) = C + Coy + Gy + Cpy® for 0 =<y < 5(x)

The application of four conditions results in a velocity profile in the form

U, 26 2\6
Now, the velocity profile is introduced into Eq. (12)

ulzy) 3y 1(1/)3
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y=40

o [B2-3 () T-32+3 () o) = v B {3 2-3(2))
= 7( 23890 p Uy, 28) %HTU‘” (separate variables §&,x and integrate term)

5 140 % :
o = F[I/]—x + C  (apply a condition at a leading edge: d =0 at xz = 0)

Finally, we obtain the laminar boundary layer thickness on a flat plate.
s _1
— =464 (Re,) ° = approxXimate solution
On the other hand, an exact solution for the laminar boundary layer
thickness on a flat plate has been given by Blasius who transformed the
boundary layer equations to a third-order ordinary differential equation

and solved it by a series expansion method and its result is:

— =5.0(Re,) * = exact solution

We have checked our approximate method against the exact solution for
the special case of a zero pressure gradient(flat plate) with good success.
We may now, with confidence, use this approximate procedure for
situations where we do not have a zero pressure gradient (flow over a
curved body). By using curvilinear coordinate it is possible to extend this

method of procedure to boundaries of mild curvature.
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Mass Flow and Boundar}-'—Laycr Thickness EXAMPLE 5-3

Air at 27°C and 1 atm flows over a flat plate at a speed of 2 m/s. Calculate the boundary-layer
thickness at distances of 20 cm and 40 cm from the leading edge of the plate. Calculate the mass
flow that enters the boundary layer between x = 20 ¢m and x = 40 cm. The viscosity of air at 27°C
is 1.85 x 1077 kg/m - 5. Assume unit depth in the z direction.

B Solution
The density of air is calculated from

p  1.0132x10°

3 3
-~ B e i 5 0.073
P BT 359 (G300) 177 kg/m~” [0.073 Ib,, /ft”]

The Reynolds number is calculated as

_(1L171)(2.0)(0.2)

At x =20 cm: Re = 25,448
1.85x 1072
E 2 ;
At x=40cm: Re= AINGD0Y =50.897
1.85 x 10—
The boundary-layer thickness is calculated from Equation (5-21):
4.64)(0.2
Atx=20cm: = (——-L-]% =0.00582 m [0.24 in]
(25.448)1/2
4.64)(0.4
Atx=40cm: = (—)()- =0.00823 m [0.4 in]
(50.897)1/2

To calculate the mass flow that enters the boundary layer from the free stream between x = 20 cm
and x = 40 cm, we simply take the difference between the mass flow in the boundary layer at these
two x positions. At any x position the mass flow in the boundary layer is given by the integral

f;pud}‘

where the velocity is given by Equation (5-19),
A S G
0 [EE i (3) ]
Evaluating the integral with this velocity distribution, we have

8 Fy b a3 5
ezt LA y— — a
j'; P“ool:za b (5) ]d} Sﬂuoo

Thus the mass flow entering the boundary layer is
Am = 2 pusq (830 — 820)
= (%)(1.17?)(2.0){0.0082 —0.0058)
=3531 %1073 kg/s [7.78 x 10~3 by /5]
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5-5 Energy equation of the boundary layer

The temperature distribution in the flow field is governed by the energy
equation, which can be derived by writing an energy balance according to
the first Law of thermodynamic for a differential volume element in the
flow field.

If there are no distributed energy sources in the fluid, the energy balance

on a differential volume element may be stated as

Rate of energy rate of energy input rate of energy input rate of increase of
input due to + due to work done + due to work done = energy in the
conduction by body forces by surface stresses element

To derive the energy equation, each term in this expression should be
evaluated. Here we consider the energy equation in the rectangular
coordinate system for steady, two-dimensional (x,y) flow of an
incompressible, constant-property, Newtonian fluid. Let AXAY <1 be the
differential volume element about a point(x,y) in the flow field. Various
terms in the above Eq. are evaluated now.

First, the heat addition into the element AXAY -1 by conduction
occurs in the x and y directions. Referring to the nomenclature shown in

Fig. 6-13, we write

Rate of energy

Q. aQ, oq,  aq,
addition by = —( % pr+ Q”’Ay) S q‘/)AxAy
. ox oy ox oy
conduction
2 2
= k(a §+ 0 Z)Axﬂyl
ox oy
. aT T
Since q, = k’g and qy = k?y

Second, if F, and F, are the body forces acting per unit volume of
the element and u and v are the velocity components in the x and y
directions, respectively, the energy input into the volume element AXAY
- 11 resulting from the increase in potential energy becomes

Rate of input
ate of energy Input _  p 4+ oF WAxAY]
by body forces

- 22 -



?-Q-! Ay + 9
ay ) ro, + mj(l'ﬂj. YAy

I uty, + % Ty ) Ay

[
LT = (17, ) Ax

o, t+

9
1o, + ﬁ(uo,)Ax

Third, the rate of energy input to the volume element AXAY -1 due to
surface stress consists of the contributions from the stresses
0.,0,,T and t,,. By referring to the illustration and nomenclature in

x Ty yx> xy

Fig.6-14, the energy input due to the normal stress o, is given by
o _ 9
{—uam + {uaw + E(UU;,,)AI} }Ayl = AzAyl Py (uo, )

and, due to the normal stress o,, given by

0 o}
{— vo, + [vay + @(vay)Ay }Aml = AxAyl @(on)

Similarly, the energy input due to the stresses 1., and t,, are given,

respectively, by

—uTt,, + (uT, + {%(UTW)Ay} Azl = AxAyl %(uﬂw)

— VT, +

1o} 0

The total rate of energy input into the element due to the stress is

obtained by summing the above four quantities:

Rate of energy input
gy P = i(U%) + i(’UUU) + i(uTW) + i(va) Az Ayl
by surface stresses ox oy ¢ oy ox !

Fourth the energy contained in the volume element is considered to
consist of the specific internal energy e per unit mass and the Kkinetic

1

energy;(u2 +27) per unit mass of the fluid. Then the energy content of

the volume element AXAY -1 becomes
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D[e'l' % (u® + vz)]AxAyl

The rate of increase of this energy is obtained by taking its total
derivative, that is,
el E-RE S T B
where the total derivative D/Dt for two-dimensional, steady flow
considered here is defined as
D 0 0
r = u% + U@

Finally, Previously derived equations are introduced to the energy
balance equation and the resulting expression is simplified by combining
it with the momentum equation introducing the definition of wvarious
stress terms given above.

After quite lengthy manipulations, the energy equation in the rectangular
coordinate system for steady, two-dimensional (x,y) flow of an
incompressible, constant—property, Newtonian fluid is determined as

o°’T  9°T

+ + ud
ox 8y2) i

where the viscous—energy-dissipation function @ is defined as

o — 2[(8_u
ox

2

_|_

2 2

o
oy
The physical significance of various terms in the above Equation is as

0 0
I )
ox oy

follows: The left-hand side represents the net energy transfer into the
control volume. The right-hand side terms in parentheses represent
conductive heat transfer. And the last term on the right-hand side is the
viscous—energy dissipation in the fluid due to internal fluid friction.

For most engineering application, the flow velocities are moderate.
Therefore, the viscous—energy dissipation term can be neglected and the

8%T

axial conduction term £k o i1s negligible. The energy equation is
x

simplified to
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oT  oT 8°T
u +o = a— (5-25)
ox oY oY
where a = k/(pc,). For the case of no flow (u=v=0), the energy

equation simplifies to steady-state heat conduction equation with no heat
generation. The energy equation of the boundary layer has a striking

similarity with the momentum boundary equation with constant pressure

(5-26)

The solution to these two equations would have exactly the same form
when o =v. Thus, we should expect that the relative magnitudes of the
thermal diffusivity and kinematic viscosity would have an important
influence on convection heat transfer since these magnitudes relate the
velocity distribution to the temperature distribution.

The dimensionless parameter, Prandtl Number, Pr
14 /’ch
P = — = —
' o k
arises from the rate laws incorporated in the governing equations for
shear stress and heat flux;

ou ou
T:u@:pya—y

q _ 0T _ (a_T)
A k&y pepe oy

Thus, Pr is a measure of the ratio of momentum diffusion through the
fluild due to viscosity, to heat diffusion by conduction. Consequently, Pr
becomes a measure of the relative size of the two boundary layers—the
velocity boundary layer and the thermal boundary layer.

In other words, for fluids having a Prandtl number equal to unity, such
as gases, 6;(z) = §(x).

6,(x) > 6(x) for fluids having Pr< 1, such as liquid metals and
6,(z) < §(x) for fluids having Pr>1, such as water and oil.
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CHAPTERS5 Principles of Convection

-6 THE THERMAL BOUNDARY LAYER

Just as the hydrodynamic boundary layer was defined as that region of the flow where
viscous forces are felt, a thermal boundary layer may be defined as that region where
temperature gradients are present in the flow. These temperature gradients would result
from a heat-exchange process between the fluid and the wall.

Consider the system shown in Figure 5-7. The temperature of the wall is T, the
temperature of the fluid outside the thermal boundary layer is T, and the thickness of the
thermal boundary layer is designated as §;. At the wall, the velocity is zero, and the heat
transfer into the fluid takes place by conduction. Thusthelocal heat flux per unit area, ¢”, is

oT
I —g' =k —] [5-27]
A 3y Jwall
From Newton's law of cooling [Equation (1-8)],
q" =h(Ty — Teo) [5-28]
where & is the convection heat-transfer coefficient. Combining these equations, we have
—k(0T/d
h— (077 3y)wall [5-29]
Tw — Too

so that we need only find the temperature gradient at the wall in order to evaluate the
heat-transfer coefficient. This means that we must obtain an expression for the temperature
distribution. To do this, an approach similar to that used in the momentum analysis of the
boundary layer isfollowed.

The conditions that the temperature distribution must satisfy are

T=T, ay=0 [a]
oT
—= ay=4é [b]
dy

T'=Tx ay=5é [c]

Figure 5-7 | Temperature profilein the
thermal boundary layer.
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5-6 TheThermal Boundary Layer

Figure 5-8 | Control volume for integral energy analysis of
laminar boundary flow.

A A y
U, —| T, —>| I |_X
H//
— ‘
U — ) N3
:

- T
da,=—k dx ay]w

and by writing Equation (5-25) at y = 0 with no viscous heating we find
3°T
dy?
since the velocities must be zero at the wall.
Conditions (a) to (d) may be fitted to a cubic polynomial asin the case of the velocity
profile, so that

-0 ay=0 [d]

0 T-T, 3y 1<y>3 [5-30]

25 2\5

O Tw—T, 28 2

where 6 =T — T,,. There now remains the problem of finding an expression for §;, the
thermal-boundary-layer thickness. This may be obtained by an integral analysis of the
energy equation for the boundary layer.

Consider the control volume bounded by the planes 1, 2, A-A, and thewall asshownin
Figure 5-8. It is assumed that the thermal boundary layer is thinner than the hydrodynamic
boundary layer, as shown. The wall temperatureis 7,,, the free-stream temperature is 7o,
and the heat given up to the fluid over the length dx is dg,,. We wish to make the energy
balance

Energy convected in+ viscous work within element

+ heat transfer at wall = energy convected out [5-31]

The energy convected in through plane 1is

H
oCp uT dy
0

and the energy convected out through plane 2 is

H d H
J </ quy) + — <,oc,, quy) dx
0 dx 0

The mass flow through plane A-Ais

d H
— dy) d
i ([ )
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CHAPTERS5 Principles of Convection

Figure 5-9 | Hydrodynamic and thermal boundary layers on a
flat plate. Heating starts at x = xg.

Xo

and this carrieswith it an energy equal to

d H
CPTOOE (/0 pu dy) dx

The net viscous work done within the element is
H / du\? i

(@)«
o \dy i

and the heat transfer at thewall is
oT ]
dqw = —k dX a—

4w

Combining these energy quantities according to Equation (5-31) and collecting terms gives

d[ (4 m H / du\? aT
Ly ] [/o (%) "y} —ag], =

Thisistheintegral energy equation of theboundary layer for constant propertiesand constant
free-stream temperature 7.

Tocal culatetheheat transfer at thewall, weneed to derivean expression for thethermal -
boundary-layer thickness that may be used in conjunction with Equations (5-29) and (5-30)
to determine the heat-transfer coefficient. For now, we neglect the viscous-dissipation term;
this term is very small unless the velocity of the flow field becomes very large. And the
calculation of high-velocity heat transfer will be considered later.

The plate under consideration need not be heated over its entire length. The situation
that we shall analyze is shown in Figure 5-9, where the hydrodynamic boundary layer
develops from the leading edge of the plate, while heating does not begin until x = xo.

Inserting the temperature distribution Equation (5-30) and the velocity distribution
Equation (5-19) into Equation (5-32) and neglecting the viscous-dissipation term, gives

d H d H
o [./o (Too_T)ud)’]:dx [/0 (Qm—G)udy}

d | r# 3y 1/y\3[[3y 1 y3
= Oootloe— -2 2(2) 112222 274
“”wdx:/o [ 25,+2(5,> [25 2 s } Y

BT} b
o — =
ay y=0 265;

233


admin
강조


234

5-6 TheThermal Boundary Layer

Let us assume that the thermal boundary layer is thinner than the hydrodynamic boundary
layer. Then we only need to carry out the integration to y = §; since the integrand is zero
for y > §;. Performing the necessary algebraic manipulation, carrying out the integration,
and making the substitution ¢ =8,/ yields

d 3 4\ 3abu ]
9oouood |: ( 2 —ﬁ)f )}_EY [5-33]

Because §; < 8, £ < 1, and the term involving ¢# is small compared with the ¢2 term, we
neglect the ¢4 term and write
3 ub

3 d o _
%Qoouooa(&' )—EF (5-34]

Performing the differentiation gives

1 dc  ,dé o
10uoo <28§ +¢ ) =

3¢
or 1 J
Euoo (2524“2 §+C38 ):a
But 140
V
Sdé=——4d
13 u
and
5 280 vx
P="="
13 us
s0 that we have d;“ 13
o
Axg? = 5-35
2+ C =17 [ ]
Noting that
dc 1d
206 _14d 3
é‘dx 3dxc

we see that Equation (5-35) is alinear differential equation of the first order in ¢3, and the

solution is
13«

3_ cy-3/4
¢ t 1 14 v

When the boundary condition
8:=0 at x=xp
=0 a x=xp

is applied, the final solution becomes

B , @ = xg 34743
=—=—~PprB1- = .
‘=%~ 1o x [5-30)
where .
Pr=— [5-37]
o

has been introduced. The ratio v/« is called the Prandtl number after Ludwig Prandtl, the
German scientist who introduced the concepts of boundary-layer theory.
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CHAPTERS5 Principles of Convection

When the plate is heated over the entire length, xo =0, and

& 1 _1/3 !
5 == 1oz [5-38]

In the foregoing analysis the assumption was made that ¢ < 1. This assumption is
satisfactory for fluids having Prandtl numbers greater than about 0.7. Fortunately, most
gases and liquids fall within this category. Liquid metals are a notabl e exception, however,
since they have Prandtl numbers of the order of 0.01.

The Prandtl number v/« has been found to be the parameter that relates the relative
thicknesses of the hydrodynamic and thermal boundary layers. The kinematic viscosity of
a fluid conveys information about the rate at which momentum may diffuse through the
fluid because of molecular motion. The thermal diffusivity tells us the same thing in regard
to the diffusion of heat in the fluid. Thus the ratio of these two quantities should express
the relative magnitudes of diffusion of momentum and heat in the fluid. But these diffusion
rates are precisely the quantities that determine how thick the boundary layerswill befor a
given external flow field; large diffusivities mean that the viscous or temperature influence
isfelt farther out in the flow field. The Prandtl number is thus the connecting link between
the velocity field and the temperature field.

The Prandtl number is dimensionless when a consistent set of unitsis used:

v_ WPl [5-39]

oz_k/pcp_ k

Inthe Sl system atypical set of unitsfor the parameterswould be w inkilograms per second
per meter, ¢, in kilojoules per kilogram per Celsius degree, and k in kilowatts per meter
per Celsius degree. In the English system one would typically employ w in pound mass per
hour per foot, ¢, in Btu per pound mass per Fahrenheit degree, and k in Btu per hour per
foot per Fahrenheit degree.

Returning now to the analysis, we have

,_ —k@T/ay, _3k _3k

— el 5-40
Ty—Teo 28, 208 [5-40]

Substituting for the hydrodynamic-boundary-layer thickness from Equation (5-21) and
using Equation (5-36) gives

1/2 3/47~1/3
h, = 0332k Prv/3 Moo Y [1— 0 /} [5-41]
VX X

The eguation may be nondimensionalized by multiplying both sides by x /k, producing the
dimensionless group on the left side,

h
Nu, = %x [5-42]

called the Nusselt number after Wilhelm Nusselt, who made significant contributionsto the
theory of convection heat transfer. Finally,

3/471/3
al ] [5-43]

Nu, =0.332Pr1/3 Rel/2 [1 -
X

or, for the plate heated over its entire length, xo = 0 and
Nu, = 0.332Pr!/3 Rel/? [5-44]
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5-6 TheThermal Boundary Layer

Equations (5-41), (5-43), and (5-44) expressthelocal values of the heat-transfer coefficient
in terms of the distance from the leading edge of the plate and the fluid properties. For the
casewhere xg = Othe average heat-transfer coefficient and Nusselt number may be obtained
by integrating over the length of the plate:

ﬁmm_
fOL dx

For a plate where heating starts at x = x, it can be shown that the average heat transfer
coefficient can be expressed as

7= 2h._1 [5-45a]

hgt _ o, 1= Cro/L)%

[5-45b]
hx:L L— X0

In this case, the total heat transfer for the plate would be
Gtotal = hg—1.(L — x0)(Tyy — Tox)

assuming the heated section is at the constant temperature T,,,. For the plate heated over the
entire length,

Nuz = - = 2 Nu,—y, [5-464]
or
__hL
Nu, = —~ =0.664 Re;/*Pri/3 [5-46b]
where L
Re, = PUo
nw

The reader should carry out the integrations to verify these resullts.

The foregoing analysis was based on the assumption that the fluid properties were
constant throughout the flow. When there is an appreciable variation between wall and
free-stream conditions, it is recommended that the properties be evaluated at the so-called
film temperature T, defined as the arithmetic mean between the wall and free-stream

temperature,
T, T
_ wJ; o (5.47]

An exact solution to the energy equation is given in Appendix B. The results of the
exact analysis are the same as those of the approximate analysis given above.

Ty

Constant Heat Flux

The above analysis has considered the laminar heat transfer from an isothermal surface. In
many practical problems the surface heat flux is essentially constant, and the objective is
to find the distribution of the plate-surface temperature for given fluid-flow conditions. For
the constant-heat-flux case it can be shown that the local Nusselt number is given by

h
NU, = =~ — 0.453 ReV/2 prl/3 [5-48]
k X

which may be expressed in terms of the wall heat flux and temperature difference as

i [5-49]

Nuy = — 2%
k(Ty — Teo)
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CHAPTERS5 Principles of Convection

The average temperature difference along the plate, for the constant-heat-flux condition,
may be obtained by performing the integration

-1 r
Ty —Too=— (Ty — Teo) dx =
0

L
_ quwl/k
0.6795 Rej/? Prl/3

1 L ogux
— x
L o kNuy

[5-50]

or
Guw = 3hx=1 (T — Too)

In these equations ¢, is the heat flux per unit area and will have the units of watts
per square meter (W/m?) in Sl units or British thermal units per hour per square foot
(Btu/h - ft2) in the English system. Note that the heat flux ¢, = g/ A is assumed constant
over the entire plate surface.

Other Relations

Equation (5-44) is applicable to fluids having Prandtl numbers between about 0.6 and 50.
It would not apply to fluids with very low Prandtl numbers like liquid metals or to high-
Prandtl-number fluidslike heavy oilsor silicones. For avery widerange of Prandtl numbers,
Churchill and Ozoe[9] have correlated alarge amount of datato givethefollowing relation
for laminar flow on an isothermal flat plate:

0.3387 Re/? prl/3

0.0468\ 231"
1 -

For the constant-heat-flux case, 0.3387 is changed to 0.4637 and 0.0468 is changed to
0.0207. Properties are still evaluated at the film temperature.

|sothermal Flat Plate Heated Over Entire Length

For the flow system in Example 5-3 assume that the plate is heated over its entire length to a
temperature of 60°C. Calculate the heat transferred in (a) the first 20 cm of the plate and (b) the
first 40 cm of the plate.

Nu, =

for Re, Pr > 100 [5-51]

B Solution

Thetotal heat transfer over a certain length of the plate is desired; so we wish to calcul ate average
heat-transfer coefficients. For this purpose we use Equations (5-44) and (5-45), evaluating the
properties at the film temperature:

27460
T2

Ty =435°C=316.5K [110.3°F]

From Appendix A the properties are
v=17.36x 10 8 m%/s [1.87 x 10~* ft¥/s]
k =0.02749 W/m-°C  [0.0159 Btu/h - ft - °F]
Pr=0.7
cp=1.006kd/kg-°C [0.24 Btu/Ibm- °F]
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5-6 TheThermal Boundary Layer

Atx=20cm
ucoX _ (2)(0.2)

Re, = =
* 17.36 x 106

=23,041

h
Nuy, = %x — 0.332ReY/%prl/3

= (0.332)(23,041)Y2(0.7)1/3 = 44.74

k 44.74)(0.02749
R (L

=6.15W/m2.°C [1.083Btu/h-ft2.°F]

The average value of the heat-transfer coefficient is twice this value, or
7= (2)(6.15)=12.3W/m2.°C [2.17 Btu/h - ft. °F]
The heat flow is B
g=hA(Ty — Teo)
If we assume unit depth in the z direction,

g=(12.3)(0.2)(60—27) =81.18 W [277 Btu/h]

Atx=40cm

Re, — UooX _ (2)(0.9)
17.36 x 106

Nu, = (0.332)(46,082)1/2(0.7)1/3 = 63.28

_ (63.28)(0.02749)
A 0.4

7l = (2)(4.349) =8.698 W/m? . °C  [1.53 Btu/h- ft2. °F]
g = (8.698)(0.4)(60 — 27) = 114.8W [392 Btu/h]

=46,082

=4.349 W/m? . °C

EXAMPLE 5-5 Flat Plate with Constant Heat Flux

A 1.0-kW heater is constructed of a glass plate with an electrically conducting film that produces
aconstant heat flux. The plate is 60 cm by 60 cm and placed in an airstream at 27°C, 1 atm with
uso =5 m/s. Calculate the average temperature difference along the plate and the temperature

difference at the trailing edge.
B Solution

Properties should be evaluated at the film temperature, but we do not know the plate temperature.
So for aninitial calculation, we take the properties at the free-stream conditions of

Too =27°C =300 K

v=1569x 10 ®m%s Pr=0.708  k=0.02624\W/m-°C

Re; = _OBO) ;91,105
15.69 x 10—

From Equation (5-50) the average temperature differenceis

_ [1000/(0.6)%](0.6)/0.02624
"~ 0.6795(1.91 x 109)1/2(0.708)1/3 ~

40°C

Ty —Teo
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Now, we go back and evaluate properties at

240427427
Ty= — s = 147°C=420K

and obtain

v=2822x108m%s Pr=0687 k=0.035Wm.°C

Re = _O9O __; 555105
28.22 x 106
[1000/(0.6)21(0.6)/0.035

=243°C

Ty — Teo

~ 0.6795(1.06 x 105)1/2(0.687)1/3
At the end of the plate (x= L =0.6 m) the temperature difference is obtained from Equations
(5-48) and (5-50) with the constant 0.453 to give

(243.6)(0.6795)

=365.4°C
0.453

(Tw — Too)x=L =

An alternate solution would be to base the Nusselt number on Equation (5-51).

Plate with Unheated Starting Length

Air at 1 atm and 300 K flows across a 20-cm-square plate at a free-stream velocity of 20 m/s. The
last half of the plate is heated to a constant temperature of 350 K. Calculate the heat lost by the
plate.

B Solution
First we evaluate the air properties at the film temperature

Tt = (Tw+ Too)/2=325K
and obtain
v=18.23x10%m?%/s k=0.02814W/m-°C Pr=0.7
At the trailing edge of the plate the Reynolds number is
Rep = uooL/v=(20)(0.2)/18.23 x 1070 =2.194 x 10°
or, laminar flow over the length of the plate.

Heating does not start until the last half of the plate, or at a position xg = 0.1 m. The local
heat-transfer coefficient for this condition is given by Equation (5-41):

Iy = 0.332% Pri/3(ung Ju0) Y2[1 — (xo/x) 075" 1/3 (4]

Inserting the property values along with xg = 0.1 gives
hy =8.6883x~1/2(1—0.17783x~0-7%)~1/3 [b]

The plate is 0.2 m wide so the heat transfer is obtained by integrating over the heated length
xg<x<L
L=02
qg=(0.2)(Ty — Txo) hydx [c]
x0=0.1
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Inserting Equation (b) in Equation (c) and performing the numerical integration gives
q = (0.2)(8.6883)(0.4845) (350 — 300) = 421 W [d]
The average value of the heat-transfer coefficient over the heated length is given by
h=q/(Tw — Teo)(L — x0) W = 421/(350 — 300)(0.2 — 0.1)(0.2) = 421 W/m?2 . °C

where W isthe width of the plate.
An easier calculation can be made by applying Equation (5-45b) to determine the average
heat transfer coefficient over the heated portion of the plate. The result is

h=42566W/m2.°C and ¢=425.66W

which indicates, of course, only asmall error in the numerical integeration.

EXAMPLE 5-7 Oil Flow Over Heated Flat Plate

Engine il at 20°C isforced over a 20-cm-square plate at avelocity of 1.2 m/s. The plateis heated
to auniform temperature of 60°C. Calculate the heat lost by the plate.

B Solution
We first evaluate the film temperature:

20460

=40°C
2

Ty

The properties of engine oil are

p =876 kg/m3 v =0.00024 m?/s
k =0.144W/m-°C  Pr=2870

The Reynolds number is
_uccL  (1.2)(0.2)

Re=— = 0.00024
Because the Prandtl number is so large we will employ Equation (5-51) for the solution. We see
that h, varies with x in the same fashion as in Equation (5-44), that is, ., < x~ /2, so that we
get the same solution as in Equation (5-45) for the average heat-transfer coefficient. Evaluating
Equation (5-51) at x = 0.2 gives

_(0.3387)(1000)Y/2(2870)1/3

= 1000

Nu —1522
’ 0.0468\ 2314
1+ -
[ ( 2870 ) }
and 152.2)(0.144
L % —109.6 W/m?2.°C

The average value of the convection coefficient is
h = (2)(109.6) = 219.2 W/m? - °C

s0 that the total heat transfer is
q=hA(Ty — To) = (219.2)(0.2)2(60 —20) =350.6 W




CHAPTERS5 Principles of Convection

5-71 THE RELATION BETWEEN FLUID
FRICTION AND HEAT TRANSFER

We have aready seen that the temperature and flow fields are related. Now we seek an
expression whereby the frictional resistance may be directly related to heat transfer.
The shear stress at the wall may be expressed in terms of afriction coefficient C s

pu?,

Tw = Cpx [5-52]

Equation (5-52) is the defining equation for the friction coefficient. The shear stress may
also be calculated from the relation

8u]
Ty=1 —
w ay Y

Using the velocity distribution given by Equation (5-19), we have

3o
208

Tw

and making use of the relation for the boundary-layer thickness gives

SUlee Uso 1/2

> i) 5-53
fw 2464 vx [ ]
Combining Equations (5-52) and (5-53) leads to
C 3 172 1
fr _ 2PV Hoo =0.323 Re; 1/2 [5-54]
2 2464 x puZ,
The exact solution of the boundary-layer equations yields
C
fo =0.332 Re[ 1/2 [5-544]
Equation (5-44) may be rewritten in the following form:
Nuy hy ~2/3 pa—1/2
= =0.332Pr 23 Re; Y
Re. Pr pcpuoo x
The group on the l€eft is called the Stanton number,
h
Sty =—-
PCpUco
so that
S, Pr¥/3 =0.332 Re, /2 [5-55]

Upon comparing Equations (5-54) and (5-55), we note that the right sides are alike except
for a difference of about 3 percent in the constant, which is the result of the approx-
imate nature of the integral boundary-layer analysis. We recognize this approximation

241


admin
텍스트에 대한 주석
To be exact, should be  Cf(x)

admin
텍스트에 대한 주석
Approximate Solution is used: 
delta/x = 4.64(Rex)-1/2


admin
텍스트에 대한 주석
delta/x=5.0(Rex)-1/2


242

5-7 The Relation Between Fluid Friction and Heat Transfer

and write

apr23= Cr

[5-56]
Equation (5-56), called the Reynol ds-Colburn anal ogy, expresses the rel ation between fluid
friction and heat transfer for laminar flow on a flat plate. The heat-transfer coefficient
thus could be determined by making measurements of the frictional drag on a plate under
conditions in which no hest transfer isinvolved.

It turns out that Equation (5-56) can also be applied to turbulent flow over aflat plate
and in amodified way to turbulent flow in atube. It does not apply to laminar tube flow. In
general, amorerigoroustreatment of the governing equationsis necessary when embarking
on new applications of the heat-transfer—fluid-friction anal ogy, and the results do not always
take the simple form of Equation (5-56). The interested reader may consult the references
at the end of the chapter for more information on this important subject. At this point, the
simple analogy developed above has served to amplify our understanding of the physical
processes in convection and to reinforce the notion that heat-transfer and viscous-transport
processes are related at both the microscopic and macroscopic levels.

Drag Force on aFlat Plate

For the flow system in Example 5-4 compute the drag force exerted on the first 40 cm of the plate
using the analogy between fluid friction and heat transfer.

B Solution
We use Equation (5-56) to compute the friction coefficient and then calculate the drag force. An
average friction coefficient is desired, so

_ c
Spe=—1 [a]

The density at 316.5K is

p _ 1.0132x 10°

P TR T 115 kg/mB
RT ~ (287)(316.5) Skg/m

p=

For the 40-cm length

h 8.698

- =388x 1073
peplioe  (1.115)(1006)(2) x

§:

Then from Equation (a)
C
7" = (388x 1073)(0.7)%/3=3.06 x 103

The average shear stress at the wall is computed from Equation (5-52):

2
. — u

= (3.06 x 103)(1.115)(2)?
=0.0136 N/m?
The drag force is the product of this shear stress and the area,
D=(0.0136)(0.4)=5.44mN [1.23x 102 Ib]
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CHAPTERS5 Principles of Convection

5-8 | TURBULENT-BOUNDARY-LAYER
HEAT TRANSFER

Consider aportion of aturbulent boundary layer as shownin Figure 5-10. A very thin region
near the plate surface has alaminar character, and the viscous action and heat transfer take
place under circumstances like those in laminar flow. Farther out, at larger y distances
from the plate, some turbulent action is experienced, but the molecular viscous action and
heat conduction are still important. This region is called the buffer layer. Still farther out,
the flow isfully turbulent, and the main momentum- and heat-exchange mechanism is one
involving macroscopic lumpsof fluid moving about in theflow. Inthisfully turbulent region
we speak of eddy viscosity and eddy thermal conductivity. These eddy properties may be
10 to 20 times as large as the molecular values.

The physical mechanism of heat transfer in turbulent flow is quite similar to that in
laminar flow; the primary differenceis that one must deal with the eddy properties instead
of the ordinary thermal conductivity and viscosity. The main difficulty in an analytical
treatment is that these eddy properties vary across the boundary layer, and the specific
variation can be determined only from experimental data. Thisis an important point. All
analyses of turbulent flow must eventually rely on experimental data because there is no
completely adequate theory to predict turbulent-flow behavior.

If one observes the instantaneous macroscopic velocity in a turbulent-flow system,
as measured with a laser anemometer or other sensitive device, significant fluctuations
about the mean flow velocity are observed asindicated in Figure 5-11, wherew isdesignated
as the mean velocity and «’ is the fluctuation from the mean. The instantaneous velocity is
therefore

u=u-+u [5-57]

The mean value of the fluctuation u” must be zero over an extended period for steady flow
conditions. There are also fluctuations in the y component of velocity, so we would write

v=T+ [5-58]
The fluctuations give rise to a turbulent-shear stress that may be analyzed by referring to
Figure 5-12.

For aunit area of the plane P-P, the instantaneous turbulent mass-transport rate across
the plane is pv’. Associated with this mass transport is a change in the x component of

Figure 5-10 | Velocity profilein turbulent boundary layer on a
flat plate.

L

X
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—<— Laminar
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5-8 Turbulent-Boundary-Layer Heat Transfer

Figure 5-11 | Turbulent fluctuations with time.

u

cl

Time, T

Figure 5-12 | Turbulent shear stress and mixing length.
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velocity u’. The net momentum flux per unit area, inthe x direction, representstheturbul ent-
shear stress at the plane P-P, or pv'u’. When a turbulent lump moves upward (v’ > 0), it
entersaregion of higher u and isthereforelikely to effect aslowing-down fluctuationin «’,
thatis, u’ < 0.A similar argument can bemadefor v' < 0, so that the average turbul ent-shear
stresswill be given as

T =—pvu’ [5-59]

We must note that even though v/ = u’ =0, the average of the fluctuation product u'v’ is
not zero.

Eddy Viscosity and the Mixing Length
Let us define an eddy viscosity or eddy diffusivity for momentum €;, such that
— d
T=—pvu = peM—u [5-60]
dy

We have aready likened the macroscopic transport of heat and momentum in turbulent
flow to their molecular counterpartsin laminar flow, so the definition in Equation (5-60) isa
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CHAPTERS5 Principles of Convection

natural conseguence of thisanal ogy. To analyze molecular-transport problemsonenormally
introduces the concept of mean free path, or the average distance a particle travel s between
collisions. Prandtl introduced a similar concept for describing turbulent-flow phenomena.
The Prandtl mixing length is the distance traveled, on the average, by the turbulent lumps
of fluid in adirection normal to the mean flow.

Let usimagine aturbulent lump that is located a distance ¢ above or below the plane
P-P, as shown in Figure 5-12. These lumps of fluid move back and forth across the plane
and give rise to the eddy or turbulent-shear-stress effect. At y + ¢ the velocity would be
approximately

ou
u(y+0)~u(y)+£—
ay

whileat y — ¢,
ou
u(y—0O~u(y) —€—
dy

Prandtl postulated that the turbulent fluctuation «’ is proportional to the mean of the above
two quantities, or
'~ — 5-61
W' [5-61]
The distance ¢ is called the Prandtl mixing length. Prandtl also postulated that v would be

of the same order of magnitude as u’ so that the turbulent-shear stress of Equation (5-60)
could be written

— 5 ( Ou 2 ou
T =—pu'v'=pl (—) = pey— [5-62]
dy dy
The eddy viscosity €, thus becomes
a
ey =022 [5-63]
dy

We have aready noted that the eddy properties, and hence the mixing length, vary
markedly through the boundary layer. Many analysistechniques have been applied over the
years to take this variation into account. Prandtl’s hypothesis was that the mixing length is
proportional to distance from the wall, or

=Ky [5-64]

where K is the proportionality constant. The additional assumption was made that in the
near-wall region the shear stress is approximately constant so that t; ~ ,,. When this
assumption is used along with Equation (5-64), Equation (5-62) yields

au\?
Ty = PKZ)’Z <_>
dy

Taking the square root and integrating with respect to y gives

1
u== "mytc [5-65]
KY p

where C isthe constant of integration. Equation (5-65) matchesvery well with experimental
data except in the region very close to the wall, where the laminar sublayer is present. In
the sublayer the velocity distribution is essentialy linear.
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5-8 Turbulent-Boundary-Layer Heat Transfer

Let us now quantify our earlier qualitative description of a turbulent boundary layer
by expressing the shear stress as the sum of a molecular and turbulent part:

a
L @rem) [5-66]
P ady

The so-called universal velocity profile is obtained by introducing two nondimensional
coordinates

u" = [5-67]

yt= [5-68]
Using these parameters and assuming t ~ constant, we can rewrite Equation (5-66) as

dut = dy"

ldey/v [5-69]

In terms of our previous qualitative discussion, the laminar sublayer is the region where

ey ~ 0, the buffer layer has ey ~ v, and the turbulent layer has €), > v. Therefore, taking
€y = 0in Equation (5-69) and integrating yields

ut =yt +c
Atthewall, u™ =0for y* =0sothat c =0 and
ut =yt [5-70]

isthe velocity relation (alinear one) for the laminar sublayer. In the fully turbulent region
€y /v > 1. From Equation (5-65)

814_1 Tw 1

dy KV opy

Substituting this relation along with Equation (5-64) into Equation (5-63) gives

T
EMZK‘/_wy
0

€m

or

—Ky" [5-71]
1%

Substituting this relation in Equation (5-69) for €, /v >> 1 and integrating gives
1
u+=f|ny++c [5-72]

This same form of equation will also be obtained for the buffer region. The limits of each
region are obtained by comparing the above equations with experimental velocity measure-
ments, with the following generally accepted constants:

Laminar sublayer: 0 <y <5 ut =yt
Buffer layer: 5< y™ <30 ut=50Iny" —3.05 [5-73]
Turbulent layer: 30 <yt <400  u™ =25Iny" +55
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The equation set (5-73) is called the universal velocity profile and matches very well
with experimental data; however, we should note once again that the constants in the equa-
tions must be determined from experimental velocity measurements. The satisfying point
is that the simple Prandtl mixing-length model yields an eguation form that fits the data
so well.

Turbulent heat transfer is analogous to turbulent momentum transfer. The turbulent
momentum flux postulated by Equation (5-59) carries with it aturbulent energy fluctuation
proportional to the temperature gradient. We thus have, in analogy to Equation (5-62),

q aT

(Z)Mb =—pepeny [5-74]

or, for regions where both molecular and turbulent energy transport are important,

% = —pep(o+ GE;E_% [5-75]

Turbulent Heat Transfer Based on Fluid-Friction Analogy

Various analyses, similar to the one for the universal velocity profile above, have been
performed to predict turbulent-boundary-layer heat transfer. The analyses have met with
good success, but for our purposes the Colburn analogy between fluid friction and heat
transfer is easier to apply and yields results that are in agreement with experiment and of
simpler form.

Intheturbulent-flow region, wheree,, > v and ey > o, we definethe turbulent Prandtl

number as

pr,= M [5-76]
€H

If we can expect that the eddy momentum and energy transport will both be increased
in the same proportion compared with their molecular values, we might anticipate that
heat-transfer coefficients can be calculated by Equation (5-56) with the ordinary molecular
Prandtl number used in the computation. In the turbulent core of the boundary layer the
eddy viscosity may be as high as 100 times the molecular value experienced in the laminar
sublayer, and asimilar behavior isexperienced for the eddy diffusivity for heat compared to
the molecular diffusivity. To account for the Prandtl number effect over the entire boundary
layer aweighted average is needed, and it turns out that use of Pr%/3 works very well and
matches with the laminar heat-transfer—fluid-friction analogy. We thus will base our cal-
culations on this analogy, and we need experimental values for C s for turbulent boundary
layer flows to carry out these computations.

Schlichting [1] has surveyed experimental measurements of friction coefficients for
turbulent flow on flat plates. We present the results of that survey so that they may be
employed in the calculation of turbulent heat transfer with the fluid-friction—heat-transfer
analogy. The local skin-friction coefficient is given by

C . =0.0592 Re; 1/ [5-77]

for Reynolds numbers between 5 x 10° and 107. At higher Reynolds numbers from 107 to
10° the formula of Schultz-Grunow [8] is recommended:

C . =0.370(log Re,) ~2584 [5-78]
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5-8 Turbulent-Boundary-Layer Heat Transfer

The average-friction coefficient for aflat plate with alaminar boundary layer up to Regit
and turbulent thereafter can be calculated from

— 0.455 A

— ]

where the constant A depends on Reg; in accordance with Table 5-1. A somewhat simpler
formula can be obtained for lower Reynolds numbers as

_ 0.074 A
Cr=—7gne Re< 10’ [5-80]
ReL ReL
Table 5-1

Reyit 3x10° 5x10° 105 3x10°

A 1055 1742 3340 8940

Equations (5-79) and (5-80) are in agreement within their common range of applicability,
and the one to be used in practice will depend on computational convenience.

Applying the fluid-friction analogy St Pr/3 = C /2, weobtainthelocal turbulent heat
transfer as:

S, Pr¥3=0.0296Re; 1  5x10° <Re, <10’ [5-81]

or
S, Pr3=0.185(logRe,) 2%* 10" <Re, < 10° (5-82]

The average heat transfer over the entire laminar-turbulent boundary layer is

Spr23— % [5-83]
For Regit =5 x 10° and Re;, < 107, Equation (5-80) can be used to obtain
S Pr?/3=0.037 Re; /° - 871 Re; [5-84]
Recalling that St=Nu/(Re; Pr), we can rewrite Equation (5-84) as
Nu, = }% =Prl/3(0.037 ReX® — 871) [5-85]

Theaverage heat-transfer coefficient can al so be obtained by integrating thelocal values
over the entire length of the plate. Thus,

1 Xerit L
h = — (/ l’l|am d.x + / hturb dx>
L 0 Xerit

Using Equation (5-55) for thelaminar portion, Regit = 5 x 10°, and Equation (5-81) for the
turbulent portion gives the same result as Equation (5-85). For higher Reynolds numbers
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CHAPTERS5 Principles of Convection

the friction coefficient from Equation (5-79) may be used, so that
hL
Nuy === = [0.228Re; (log Re; ) 2% — 871)Prl/3 [5-853]

for 10’ < Re;, < 10° and Regit =5 x 10°.

The reader should note that if a transition Reynolds number different from 500,000
is chosen, then Equations (5-84) and (5-85) must be changed accordingly. An alternative
equation is suggested by Whitaker [10] that may give better results with some liquids
because of the viscosity-ratio term:

1/4
Nu = 0.036 Pro43(Re?8 — 9200) (’;ﬁ) [5-86]
w

for

0.7 < Pr <380
2 x 10° <Re; <5.5x 10°

026< > _35

Hw

All propertiesexcept ., areevaluated at thefree-streamtemperature. For gasestheviscosity
ratio is dropped and the properties are evaluated at the film temperature.

Constant Heat Flux

For constant-wall-heat flux in turbulent flow it is shown in Reference 11 that the local
Nusselt number is only about 4 percent higher than for the isothermal surface;
that is,
Nu, =1.04Nu, [5-87]
Tw:oonsx
Somemore comprehensive methodsof correlating turbul ent-boundary-layer heat trans-
fer are given by Churchill [11].

Turbulent Heat Transfer from

shama Flt Pt

Air at 20°C and 1 atm flows over aflat plate at 35 m/s. The plate is 75 cm long and is maintained
at 60°C. Assuming unit depth in the z direction, calculate the heat transfer from the plate.

H Solution
We evaluate properties at the film temperature:

20460
Ty == =40°C=313K

p 10132 x 10°
p=o==

_ 3
RT ~ (8n@ — LiRke/m

n=1.906x 10~° kg/m-s

Pr=07 k=002728W/m-°C ¢, =21.007kJ/kg-°C
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5-9 Turbulent-Boundary-Layer Thickness

The Reynolds number is
_ pucol  (1.128)(35)(0.75)

o105 = 1.553 x 10°
5 X =

Rer,

andtheboundary layer isturbul ent becausethe Reynoldsnumber isgreater than 5 x 10°. Therefore,
we use Equation (5-85) to calculate the average heat transfer over the plate:

__  hL
Nu ==~ = Prl/3(0.037 ReY8 — 871)
= (0.7)Y/3[(0.037)(1.553 x 10%)0-8 _ 871]=2180

— __ k (2180)(0.02723
h:NuLzz%zm.lW/mz-"C [13.9 Btu/h-ft2 - °F]

g=hA(Ty — Teo) = (79.1)(0.75) (60 — 20) = 2373 W [8150 Btu/h]

5-9 | TURBULENT-BOUNDARY-LAYER THICKNESS

A number of experimental investigations have shown that the velocity profile in aturbulent
boundary layer, outside the laminar sublayer, can be described by a one-seventh-power

relation o
9 = Y [5-89]

where § is the boundary-layer thickness as before. For purposes of an integral analysisthe
momentum integral can be evaluated with Equation (5-88) because the laminar sublayer is
so thin. However, the wall shear stress cannot be calculated from Equation (5-88) because
ityieldsan infinitevalueat y=0.

Todeterminetheturbul ent-boundary-layer thicknessweemploy Equation (5-17) for the
integral momentum relation and evaluate the wall shear stress from the empirical relations
for skin friction presented previously. According to Equation (5-52),

__Crpuz
= Croue
2

and so for Re, < 107 we obtain from Equation (5-77)

b\ /5
17, = 0.0296 <—> ou?, [5-89]

UsoX

Now, using the integral momentum equation for zero pressure gradient [Equation (5-17)]
along with the velocity profile and wall shear stress, we obtain

da y Y7 sy Y7 b \1/5
— 1-(= = dy =0.0296
dx o |: (8 ](8 Y (uoox)

Integrating and clearing terms gives

s 72 5
L0020 () x5 [5-90]
dx 7 Uso

We shall integrate this equation for two physical situations:
1. The boundary layer is fully turbulent from the leading edge of the plate.
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CHAPTERS5 Principles of Convection

2. The boundary layer follows alaminar growth pattern up to Regit =5 x 10° and a tur-
bulent growth thereafter.

For thefirst case, we integrate Equation (5-89) with the condition that § =0 at x =0to
obtain

5
- =0.381Re /° [5-91]
X

For case 2 we have the condition

S=08an o xgit=5x 10°—— [5-92]

Uoo
Now, §1am is calculated from the exact relation of Equation (5-21a):
8tam = 5.0x¢it (5 x 10°)~1/? [5-93]

Integrating Equation (5-89) gives

72 55
= bjam = — (0.0296) <l> 2 (xo—2R) [5-94]

Uoo crit

Combining the various relations above gives
)
- =0.381Re; /° — 10,256 Re; ! [5-95]
X

Thisrelation applies only for theregion 5 x 10° < Re, < 10.

Turbulent-Boundary-L ayer Thickness

Calculate the turbulent-boundary-layer thickness at the &VZ_J the plate for Example 5-9, assum-
ing that it develops (a) from the leading edge of the plate and (b) from the transition point at
Regit =5 x 10°.

B Solution
Since we have already cal culated the Reynolds number asRe;, = 1.553 x 108, itisasi mple matter
to insert this value in Equations (5-91) and (5-95) along with x = L = 0.75 m to give

(@) 8 = (0.75)(0.381)(1.553 x 108) 92 — 0.0165 m = 16.5 mm [0.65 in]

(b) 8= (0.75)[(0.381)(1.553 x 10%)~0-2 — 10,256(1.553 x 10%) 1
—=0.0099 m=9.9mm [0.39in]

The two values differ by 40 percent.

An overall perspective of the behavior of the local and average heat-transfer coeffi-
cientsisindicated in Figure 5-13. Thefluid is atmospheric air flowing across an isothermal
flat plate at 1., = 30 m/s, and the cal cul ations were made with Equations (5-55), (5-81), and
(5-85), which assume a value of Regit =5 x 10°. The corresponding value of xgit is
0.2615 m and the plate length is 5.23 m at Re=10’. The corresponding boundary-layer
thickness is plotted in Figure 5-14. As we have noted before, the heat-transfer coefficient
variesinversely with the boundary-layer thickness, and an increase in heat transfer is expe-
rienced when turbulence begins.
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Figure 5-13 | Local and average heat-transfer coefficient for atmospheric airflow over

isothermal flat plate at 1~ = 30 m/s (a) semilog scale (b) log scale.
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Figure 5-14 | Boundary-layer thickness for atmospheric air at 1o = 30 m/s.
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5-10 | HEAT TRANSFER IN LAMINAR TUBE FLOW

Consider the tube-flow system in Figure 5-15. We wish to calcul ate the heat transfer under
developed flow conditions when the flow remains laminar. The wall temperatureis 7., the
radius of the tube is r,, and the velocity at the center of the tube is ug. It is assumed that
the pressure is uniform at any cross section. The velocity distribution may be derived by
considering the fluid element shown in Figure 5-16. The pressure forces are balanced by
the viscous-shear forces so that

d
r? dp = 127r dx = 2mtrpu dx d_u
,

or
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5-10 Heat Transfer in Laminar Tube Flow

Figure 5-16 | Force balance on fluid element in tube flow.

—— 7 (27 dx)

(7 A

p(r?)\ J \ J(p+ dp)(r?)
I dx I
and 14
P 2
=—— const
aidx
With the boundary condition

u=0 ar=r,
14

BT
Au dx

the velocity at the center of the tube is given by

2
rs d
wp=—-o P

4 dx

so that the velocity distribution may be written

}”2
2-1-7
0 rs

[5-96]

[5-97]

[5-98]

which is the familiar parabolic distribution for laminar tube flow. Now consider the heat-
transfer process for such aflow system. To simplify the analysis, we assume that thereisa

constant heat flux at the tube wall; that is,

dgy _
dx

The heat flow conducted into the annular element is
oT
dg, = —k2mr dx —
or
and the heat conducted out is

oT  9°T
dqrigr =—k2n(r +dr)dx | — + — dr
or ar?

The net heat convected out of the element is
2rtr dr ,oc,,ua—T dx
0x
The energy balanceis
Net energy convected out = net heat conducted in

or, neglecting second-order differentials,

aTd dr=k 8T+ Cac dx d
rocou—dxdr=k [ — +r—= | dxdr
PPt oy or ar?
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CHAPTERS5 Principles of Convection

which may be rewritten
T ) 10T

éja% <r5 - [5-99]

- o ox
We assume that the heat flux at the wall is constant, so that the average fluid temperature
must increase linearly with x, or

oT
— =const
0x

This means that the temperature profiles will be similar at various x distances along the
tube. The boundary conditions on Equation (5-99)

a—T—O atr:@

or
oT
k— = gy = const
or r=ro

To obtain the solution to Equation (5-99), the vel ocity distribution given by Equation (5-98)
must be inserted. It is assumed that the temperature and velocity fields are independent;
that is, atemperature gradient does not affect the calculation of the velocity profile. Thisis
equival ent to specifying that the propertiesremain constant in the flow. With the substitution
of the velocity profile, Equation (5-99) becomes

d ( 9T\ 10T r2
—|r—)=——uo|ll—=)r
or \ or o Ox r2

or 10T 2
= w |l =—-—-—J)+C

o ~amo\7 722

Integration yields

and a second integration gives

T 10T 2 74 S CilnF4C
=——ug| ——— r
o 0x 0 4 16r§ ! 2

Applying thefirst boundary condition, we find that
C1=0
The second boundary condition has been satisfied by noting that the axial temperature

gradient 97/0x is constant. The temperature distribution may finally be written in terms of
the temperature at the center of the tube:

T=T. ar=0 sotha Co=T.

10T u0r2 \° 1/r\*
T-T,=———2 —) —= = 5-100
aox 4 |:<ro> 4<r0) [ ]

The Bulk Temperature

In tube flow the convection heat-transfer coefficient is usually defined by

Local heat flux=¢q" = h(T, — Tp) [5-101]
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5-10 Heat Transfer in Laminar Tube Flow

where T, isthewall temperature and 7}, isthe so-called bulk temperature, or energy-average
fluid temperature across the tube, which may be calculated from
? p2nrdruc,T

.
Jo! p2rrdruc,

[5-102]
The reason for using the bulk temperature in the definition of heat-transfer coefficients for
tube flow may be explained as follows. In a tube flow there is no easily discernible free-
stream condition asis present in the flow over aflat plate. Even the centerline temperature
T, isnot easily expressed in terms of the inlet flow variables and the heat transfer. For most
tube- or channel-flow heat-transfer problems, the topic of central interest isthetotal energy
transferred to the fluid in either an elemental length of the tube or over the entire length
of the channel. At any x position, the temperature that is indicative of the total energy of
the flow is an integrated mass-energy average temperature over the entire flow area. The
numerator of Equation (5-102) represents the total energy flow through the tube, and the
denominator represents the product of mass flow and specific heat integrated over the flow
area. The bulk temperature is thus representative of the total energy of the flow at the
particular location. For this reason, the bulk temperature is sometimes referred to as the
“mixing cup” temperature, sinceit is the temperature the fluid would assumeif placed in a
mixing chamber and allowed to cometo equilibrium. For the temperature distribution given
in Equation (5-100), the bulk temperature is alinear function of x because the heat flux at
the tube wall is constant. Calculating the bulk temperature from Equation (5-102), we have

7 uogr? dT
Ty=T,+—=—2— 5-103
b=l 9% o ox [ |
and for the wall temperature
3 ugr2 ar
Ty=T+ -—>— -104
v et 16 o ox [5-104]
The heat-transfer coefficient is calculated from
aT
q=hA(Ty, —Tp)=kA (—) [5-105]
or r=ro
) K@T/0r) =,
N Ty — Th
The temperature gradient is given by
T~ _uodT (i _ ’_32) _ uoro 0T [5-106]
orl, odx\2 45/, 4o 0x
Substituting Equations (5-103), (5-104), and (5-106) in Equation (5-105) gives
24k 48k
S 11r, 114,
Expressed in terms of the Nusselt number, the result is
hd,
Nuy = k” =4.364 [5-107]

which isin agreement with an exact calculation by Sellars, Tribus, and Klein [3], that con-
siders the temperature profile as it develops. Some empirical relations for calculating heat
transfer in laminar tube flow will be presented in Chapter 6.
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CHAPTERS5 Principles of Convection

We may remark at this time that when the statement is made that a fluid enters a tube
at a certain temperature, it isthe bulk temperature to which we refer. The bulk temperature
isused for overall energy balances on systems.

5-11 | TURBULENT FLOW INA TUBE

The developed velocity profile for turbulent flow in a tube will appear as shown in
Figure 5-17. A laminar sublayer, or “film,” occupies the space near the surface, while
the central core of the flow is turbulent. To determine the heat transfer analytically for this
situation, we require, as usual, a knowledge of the temperature distribution in the flow. To
obtain this temperature distribution, the analysis must take into consideration the effect of
the turbulent eddies in the transfer of heat and momentum. We shall use an approximate
analysis that relates the conduction and transport of heat to the transport of momentum in
the flow (i.e., viscous effects).
The heat flow across afluid element in laminar flow may be expressed by

qg ,dT
A dy
Dividing both sides of the equation by pc),,
q dT
pcpA dy

It will be recalled that « is the molecular diffusivity of heat. In turbulent flow one might
assume that the heat transport could be represented by

q
pcpA

T
=—(Ol+€H)d— [5—108]
dy

where e isan eddy diffusivity of heat.
Equation (5-108) expressesthetotal heat conduction asasum of the molecular conduc-
tion and the macroscopic eddy conduction. Inasimilar fashion, the shear stressin turbulent

flow could be written
T du

d
—=<E+6M>—=(V+EM)—M [5—109]
o \p dy dy
where e, isthe eddy diffusivity for momentum. We now assume that the heat and momen-
tum are transported at the samerate; that is, ey = ey and v=q, or Pr=1.
Dividing Equation (5-108) by Equation (5-109) gives
q
CpAT

du =—dT

An additional assumption is that the ratio of the heat transfer per unit area to the shear
stress is constant across the flow field. Thisis consistent with the assumption that heat and

Figure 5-17 | Velocity profile in turbulent tube flow.
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momentum are transported at the same rate. Thus

4 _const=-I
At ApTw

[5-110]

Then, integrating Equation (5-109) between wall conditionsand mean bulk conditionsgives

q u=u,, Tp
=2 / du= / —dT
Awfwcp u=0 w

U - [5-111]

But the heat transfer at the wall may be expressed by
qw :hAw(Tw —Tp)
and the shear stress may be calculated from

Ap(rrdg) Ap d,
Ty=—r"=——
Y7 4nd, L T 4 L

The pressure drop may be expressed in terms of afriction factor f by

Ap= fd%p% [5-112]
so that f
Ty = gpui [5-113]
Substituting the expressions for t,, and ¢, in Equation (5-111) gives
L [5-114]

PCplim "~ Re; Pr 8

Equation (5-114) is caled the Reynolds analogy for tube flow. It relates the heat-transfer
rate to the frictional lossin tube flow and isin fair agreement with experiments when used
with gases whose Prandtl numbers are close to unity. (Recall that Pr =1 was one of the
assumptionsin the analysis.)
Anempirical formulafor the turbulent-friction factor up to Reynolds numbers of about
2 x 10° for the flow in smooth tubesis
0.316

f=—— [5-115]
Re/*

Inserting this expression in Equation (5-1413) gives

N _
Y _0.0395Re; ¥4
Re; Pr
or
Nu, = 0.0395 Re”/* [5-116]

sincewe assumed the Prandtl number to be unity. Thisderivation of therelation for turbulent
heat transfer in smooth tubes is highly restrictive because of the Pr 22 1.0 assumption. The
heat-transfer—fluid-friction analogy of Section 5-7 indicated a Prandtl-number dependence
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of Pr/3 for the flat-plate problem and, asit turns out, this dependence works fairly well for
turbulent tube flow. Equations (5-114) and (5-116) may be modified by this factor to yield

St pre/3 =£ [5-114a]

Nu, = 0.0395 R/ prl/3 [5-1164]

Aswe shall seein Chapter 6, Equation (5-116a) predicts heat-transfer coefficients that
are somewhat higher than those observed in experiments. The purpose of the discussion at
this point has been to show that one may arrive at arelation for turbulent heat transfer in a
fairly smpleanalytical fashion. Aswe haveindicated earlier, arigorous devel opment of the
Reynolds analogy between heat transfer and fluid friction involves considerations beyond
the scope of our discussion, and the simple path of reasoning chosen hereis offered for the
purpose of indicating the general nature of the physical processes.

For calculation purposes, a more correct relation to use for turbulent flow in a smooth
tube is Equation (6-4a), which we list here for comparison:

Nu, = 0.023 Re)8 pr04 [6-4a]

All propertiesin Equation (6-4a) are evaluated at the bulk temperature.
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