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Review Info - Antiderivatives

n General solutions:

y f(x)dx F(x) C= = +ò
Integrand

Variable of 
Integration

Constant of 
Integration



Review

n Rewriting & Integrating – general solution
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Particular Solutions

n To find a particular solution, you must have 
an initial condition

n Ex:  Find the particular solution of                         
that satisfies the condition F(1) = 0
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Indefinite & Definite Integrals

n Indefinite Integrals have the form:  

n Definite integrals have the form:
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7.4 The Fundamental Theorem of 
Calculus
n This theorem represents the relationship 

between antiderivatives and the definite 
integral



Here’s How the Theorem Works

n First find the antiderivative, then find the 
definite integral
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Properties of Definite Integrals

n The chart on P. 466:



Example – Sum/Difference
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Less Confusing Notation?

n Evaluate ( )
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Substitution - Review

n Evaluate

n Let u = 3x – 1; du = 3dx
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Substitution & The Definite Integral

n Evaluate

n Let u = 25 – x2; du = -2xdx 
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Area

n Find the area bounded by the curve of        f(x) 
= (x2 – 4), the x-axis, and the vertical lines x = 
0, x = 2
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The answer is negative because 
the area is below the x-axis.  Since 
area must be positive just take the 
absolute value.
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Finding Area



Area – Last Example

n Find the area between the x-axis and the 
graph of f(x) = x2 – 4 from x = 0 to x = 4.
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8.2 Volume & Average Value

n We have used integrals to find the area of 
regions.  If we rotate that region around the x-
axis, the resulting figure is called a solid of 
revolution.



Volume of a Solid of Revolution



Volume Example

n Find the volume of the solid of revolution 
formed by rotating about the x-axis the region 
bounded by y = x + 1, y = 0, x = 1, and x = 4.



Volume Example
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Volume Problem

n Find the volume of the solid of revolution 
formed by rotating about the x-axis the area 
bounded by f(x) = 4 – x2 and the x-axis.



Volume Con’t
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Average Value



Average Price

n A stock analyst plots the price per share of a 
certain common stock as a function of time 
and finds that it can be approximated by the 
function 

n S(t)=25 - 5e-.01t 

n where t is the time (in years) since the stock 
was purchased.  Find the average price of the 
stock over the first 6 years.



Avg Price - Solution

n We are looking for the average over the first 6 
years, so a = 0 and b = 6.
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10.1 Differential Equations

n A differential equation is one that involves an 
unknown function y = f(x) and a finite number 
of its derivatives.  Solving the differential 
equation is used for forecasting interest rates.

n A solution of an equation is a number 
(usually). 

n A solution of a differential equation is a 
function.



Differential Equations



Population Example

n The population, P, of a flock of birds, is 
growing exponentially so that                      , 
where x is time in years.

n Find P in terms of x if there were 20 birds in 
the flock initially. 
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Note:  Notice the denominator has 
the same variable as the right side 
of the equation.



Population Cont

n Take the antiderivative of each side:

n This is an initial value problem.  At time 0, we 
had 20 birds.
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One More Initial Value Problem

n Find the particular solution of                         
when y = 2, x = -1 
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Note:  Notice the denominator has 
the same variable as the right side 
of the equation.



Separation of Variables

n Not all differential equations can be solved 
this easily.  

n If interest is compounded continuously then 
the money grows at a rate proportional to the 
amount of money present and would be 
modeled by dA kA

dt
=

Note:  Notice the denominator does 
not have the same variable as the 
right side of the equation.



Separation of Variables

n In general terms think of 

n This of dy/dx as the fraction dy over dx (which 
is totally incorrect, but it works!)

n In this case, we have to separate the 
variables
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Example

n Find the general solution of

n Multiply both sides by dx to get  
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Lab 4 – Due Next Time on Exam Day

n 1.  #34, P471 9.  #25, P523
n 2.  #59, P440 10. #35, P523
n 3.  #22, P471 11. #3, P629
n 4.  #45, P439 12. #7, P629
n 5.  #11, P439 13. #19, P630
n 6.  #13, P471 14. #27, P630
n 7.  #27, P439 15. #43, P472
n 8.  #17, P522


