Chapter 4. Unsteady—State Conduction

4-1 INTODUCTION

If a solid body is suddenly subjected to a change in environment
some time must elapse before an equilibrium temperature condition will
prevail in the body. During this transient period the temperature change
and the analysis must take into account changes in the internal energy of
the body with time. Unsteady-state heat transfer analysis is obviously of
significant practical interest because of the large number of heating and
cooling processes which are time-dependent.

To analyze a transient heat transfer problem, we could proceed by
solving the general heat-conduction equation by the separation of
variables method, similar to the analytical treatment used for the
two—dimensional steady—state problem.

Consider the infinite plate of thickness L, initially at a uniform
temperature T;, at time zero. The surface is suddenly lowered to and
subsequent times maintained at a constant temperature Ti. It is desired
to find the temperature at any location in the plate as a function of time
for t>0, ie, T(xt).

/ Initia| Temperature T=Ti at t=0

T=T1 :
J

for £>0 T=Ti4| for t>0

Figure. The infinite plate, initially at uniform temperature, subjected at

time zero to sudden cooling of surface.



The governing equation with constant thermo-physical properties and no

internal heat sources is

8*T 1 8T
= —— B.C. T= T; at x=0, t>0 or T¢t)= T

axQ o ot
T= T: at x=L, t>0 or T(Lt= T,
IC. T=T; at 0<x<L, t=0 or T(x,0)= Ti

It is desirable to work in terms of a temperature difference variable
0 =T-T
2
070 1 660 ) . .
— = (Heat diffusion equation) -@©

Boundary and Initial conditions

0(0,t)=0 at x=0, t>0 (a)
OlL,t)=0 at x=L, t>0 (b)
0(x,00=6; at 0<x<L, t=0 (c)

Seeking the existence of a product solution, one assumes that the solution

1S representable as
O(x,t) = X(x)Y(t)
which will produce the two ordinary differential equations

1 dy  d&X1

- = :_2 —
oYt g x @

where A\ 1s the separation parameter and the negative sign was chosen
to assure a negative exponential solution in time

— —aN’t
Y= ae

X= a,cos\x + azsindx

Thus, the general solution to equation @ is



The constants Ci;, Cp, andA are to be determined from the imposed

boundary conditions and initial condition

From B.C. (a), 0= 016_(”% and C1=0 for t>0

From B.C. (b), OZ(C’Qsin)\L)e_Wt where Cz cannot be zero because it

6=
may result in a trivial solution when ¢ >0
x=0
Thus sinAL =0 where A = LL]I, where n=1,2,3:-

(note : n=0 is excluded because it would give the trivial solution, ©=0)
The sum of the corresponding solutions for each A is the solution in
equation @

0(x,t) = Y, Cre” [””/L]Qatsin—nzx -@

n=1

Apply the initial condition at t=0 as given by (c) to obtain

nmTx

0, = 7;16,’nsin 7 -®)

What are the values of C, that satisfy equation @ ?
Determination of the C.'s requires an application of the theory of Fourier

sine series of an odd function.

L
C;Z: E/ Gisin nrr do = i@l n=1,3,5"
LJ, L nm

:0 n:27476...

NOTE : Fourier sine series of an odd function having length of L

f(:c) = i b,sin (n—zx)

n=1
2 L ., NI
bn—ffof(x)sm( 7 )dx

The theory of Fourier series states that an arbitrary function f(x) may be

expressed as an infinite series of sine functions of the form



In our case f(x)=0,= T,— T,

2 [t 4 4
SO = —f f,sin UL —0, = —(7,— Ty) for n=1,35"
LJ " L nmw ' nmw "
Finally, substitute C, into equation @
4 & 1, 2
O(x,t) = — —0,e Inn/DPat g3 ) PTL
Tp=135"1 L
0 -1 4 A 1 pu/rfar nmx
i = = —e MHMgin—— f =1,3,5..
0 T—T Wn_zl;%ne sin 7 orn 3,5

4-2 LUMPED HEAT CAPACITY SYSTEM

We shall continue our discussion of transient heat conduction by
assuming that the temperature of system is only a function of time and

is uniform throughout the system at any instant. The above assumption

(or simplification) is justified when the external thermal resistance (or
surface—convection resistance) between the surface of the system and the
surrounding medium is so large compared to the internal thermal
resistance (or internal-conduction resistance) of the system that it
controls the heat transfer process. As a result, the major temperature
gradient would occur through the fluid layer at the surface.

A measure of the relative importance of the thermal resistance
within a solid body is the ratio of the internal resistance to the external
resistance, called the Biot number, B:. It is defined as

R, hL
K

e

where h : the average heat transfer coefficient (W/m?-°C)
L=V/As : characteristic dimension of solid body
k : thermal conductivity of solid body

Consider the sudden cooling of a small metal casting or a billet in
a quenching bath after its removal from a hot furnace so that the
temperature change by a step will be experienced



Change in an internal energy of Net heat flow from the billet to

the billet during dt = the quenching bath during dt
(Black’s heat capacity equation) (Newton’s law of cooling)
dT
q:—CPVE: hA(T—T.) where T > Tw

The convection heat loss from the body is experienced as a decrease in

the internal energy of the body.

Separate the variables and integrate with initial condition (T= T, at t= 0)

/Td(T_TOO)dT /t hASd
-7, - J, cht

1
(1T [hAS}
o o i e
hA,
-7 e-[w]t
7T,
hAt . .
where, the exponent W must be dimensionless
h At WL\ kt (hL) at .
ch‘( k )(ch2)‘ k (?)‘w‘)(m

Fo : Fourier number is the ratio of the heat transfer rate by conduction
to the energy storage rate in the system. It is an important parameter in

transient conduction problem.

) V0 . ) . .
The quantity [%} is called the time constant of the system since it

has the dimension of time. Its value is indicative of the rate of response
of a single—capacity system to a sudden change in the environmental
cpV
hA,

T-Te 1s equal to 36.8% of the initial temperature difference To-T

temperature. Observe that when t= , the temperature difference




Applicability of Lumped Heat Capacity Analysis

We have already noted that the lumped heat capacity analysis
assumes a uniform temperature distribution throughout the solid body and
that the assumption is equivalent to saying that the surface-convection
resistance 1s large compared with the internal-conduction resistance. Such
an analysis may be expected to yield reasonable estimates within about
5% when the following condition is met:

hL/k < 0.1
The reader should recognize that there are many practical cases where
the lumped heat capacity method may yield good results. Examples in
Table 4-1 illustrate the relative validity of such cases. We may point out
that uncertainties in the heat transfer coefficient of + 25% are quite

Comimaorn.

l'able 4-1 | Examples of lumped-capacity systems.

Approximate
value of &, h(V/A)
Physical situation k. Wim.°C W/m?.°C -
1. 3.0-cm steel cube cooling in room air 40 7.0 B.75 x 1072
2. 5.0-cm glass cylinder cooled by a 50-m/s airstream 0.8 180 2.81
3. Same as situation 2 but a copper cylinder 380 180 0.006
4. 3.0-cm hot copper cube submerged in water 380 10,000 0.132

such that boiling occurs




Steel Ball Cooling in Air EXAMPLE 4-1

A steel ball [¢ =0.46 kJ/kg - °C, k=35 W/m - °C] 5.0 cm in diameter and initially at a uniform
temperature of 450°C is suddenly placed in a controlled environment in which the temperature
is maintained at 100°C. The convection heat-transfer coeflicient is 10 W/m? - °C. Calculate the
time required for the ball to attain a temperature of 150°C.

B Solution

We anticipate that the lumped-capacity method will apply because of the low value of  and high
value of k. We can check by using Equation (4-6):
h(V/A)  (10)[(4/3)7(0.025)%]
kK 4m(0.025)2(35)

=0.0023 < 0.1

so we may use Equation (4-5). We have

T =150°C p=7800kg/m® [486 Ib,, /ft’]
Too = 100°C  h=10W/m?-°C [1.76Btu/h- fi®.°F]
Ty=450°C ¢=4601J/kg-°C [0.11 Btu/lb,, - °F]

hA (10)477(0.025)2
pcV "~ (7800)(460)(47/3)(0,025)3

=3.344 x 1074 57!

:r ke T:y.‘_\
Th—Tx
150100 33405 04

_ ~[hApeVIe

450 —100
t=5819s=1.62h

4-3 TRANSIENT HEAT FLOW IN A SEMI-INFINITE SOLID
(very thick wall and infinitely long solid)

Consider the semi-infinite solid shown in the above figure maintained at

some initial temperature Ti. The surface temperature is suddenly lowered



and maintained at temperature To and we seek an expression for the

temperature distribution in the solid as a function of time.

Heat diffusion equation
o°T _ 1 8T
8;52 a ot

B.C. T@Ot=To T(eot) = Ti

LC. T&0=T:
For the initial condition we shall specify that the temperature inside the
solid is uniform at Ti that is, T(x,0)=T. For one of the two required
boundary conditions, we postulate that far from the surface the interior

temperature will not be affected by the temperature wave,
ie., T(oot) = Ty

The closed—form solutions have been obtained for four types of

changes in surface conditions, instantaneously applied at t=0

(Case 1) A Sudden Change of Temperature at Surface : the surface
temperature is suddenly lowered and maintained at T, at x=0

T a

T

o

» X
s x

Temperature Distribution in the semifinite solid

We have {B.C's: T(0,t)=1T,, T(co,t) = Ti}and {LC. : T(2,0)= T}

This is the problem which may be solved by the Laplace-Transform
T(z,t)— T

o

technique and the solution is given as; 77 erf

vl



. . xr 2 2\;01_75 _ 772
where, the Gaussian error function er = f e d
/ 2+ at ) v J g g

where, 1 is a dummy variable and the integral is a function of its upper

limit.

1,2

. i/ 2\;@ - At d
(Note) : ), e dn=e " — 2\/_

Figure 4-4 | Response of semi-infinite solid to sudden change in surface temperature
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TI(X, = Tr]

The rate of heat flow at the surface (at x=0) becomes

kA(TO — Ti)
= —kAﬂ = ———— and
9, dx vV ot
iT Iy T,- %—i
= (T,—T,)—=e (=)= ot
dx \/F dr " 2+/at Vot

The total heat transfer at the surface over the period of time

t
Q= [ adt=2kA(1,~ 1)/ (Joute)
0 ™



(Case 2) Constant Heat Flux at Surface : a sudden application of a
specified heat flux (¢/A4),_,= q,/A (the surface is suddenly exposed to

the thermal radiation)

T(x.t) 4
a/A
t
$ T
T, 5
t=0
Albpd* il
/ 4, dT
We have {B.C. s; T(oo,t) =T, 7= _kﬁ} } and {£C.; T(z,0) = T}}
2¢ Vat/w ( 22 ) qx o
Y e vy i a(l‘ﬂfgrat

2¢ Vat/m
S

Therefore, at x=0 (at the surface) 7, A ;

And heat flux at a given position X becomes (%) = —k—]
T T

(Case 3) Energy Pulse at Surface : a short, instantaneous pulse of

energy having a magnitude of @Q,/A (J/m?) is applied at the surface.

The resulting temperature response is given by

Qo ] ( .732
T—T7T = | ——— = |exp|— —
' [ Apc (7rod§)1/2 P 4ot

_10_



Figure 4-4 | Response of semi-infinite solid to instantaneous surface pulse of Qg /A J/m?
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In contrast to the constant-heat-flux case where the temperature
increases indefinitely for all x and times, the temperature response to the
instantaneous  surface pulse will die out with time, or
T—1T,—0 for all x as t— o,

The rapid exponential decay behavior is illustrated in Figure 4-4 above.

(Case 4) Convection Boundary Conditions @ a sudden exposure of the
surface to a fluid at a different temperature through a uniform heat
transfer coefficient h

S
_|
g
¥
S

_11_



dT
BC'S: —k——| =hT04)=-T.), T(xp) =T
T 1r=0
IC 3 T(X,O) Tl
-1 _ T hr  hat T h\/@
7T 1—erf(2\/07)—[exp T+—k2 ) 1—erf(2\/£+ k )} [4-15]
or
g T7—1T, _ T—1T.,
Lnce TOO_TZ— _Ti_Too

The solution i1s presented in graphical in Figure 4-5.

Figure 4-5 | Temperature distribution in the semi-infinite solid with convection boundary condition.
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Iterative method(trial-and—error procedure) is used to determine the time

required for the surface or interior to reach a certain temperature.

_12_



At the surface where x=0, T(,t) = T, is plugged into the above

solution to obtain

* To_Too

p— — T ’); —— —
T 7. = erfe(y) (a)
where, v= hvat = h\/? since a= —
7 k vV pck pc

YV pck

Thus, h= ———

Vit

Knowing T,, Ti, and T, we can calculate T". First, make an initial
guess for h and calculate 7. Now substitute v into equation (a) to see
if 1t satisfies the initially guessed value of h. If not, repeat the same

procedure until it agrees with a previously guessed value of h.



Semi-Infinite Solid with Sudden Change
EXAMPLE 4-2 in Surface Conditions

A large block of steel [k =45 W/m - °C. o = 1.4 x 10~ m?/s] is initially at a uniform temperature
of 35°C. The surface is exposed to a heat flux (¢) by suddenly raising the surface temperature to
250°C and (b) through a constant surface heat flux of 3.2 x 10° W/m?. Calculate the temperature
at a depth of 2.5 cm after a time of (0.5 min for both these cases.

B Solution
We can make use of the solutions for the semi-infinite solid given as Equations (4-8) and (4-13a).

For case a,
0.025

Z
2/at  (2)[(1.4 x 10—3)(30)]'/2

=(.61

The error function is determined from Appendix A as

=ert 0.61 =0.61164

X
ert
2.0t

We have T; =35°C and T =250°C, so the temperature at x=2.5 cm is determined from
Equation (4-8) as

X
2./0T
=250+ (35 -250)(0.61164) = 118.5°C

T(x, 1) = Ty + (T; — Tg) erf

For the constant-heat-flux case b, we make use of Equation (4-13a). Since gp/A is given as
3.2 % 105 W/m?, we can insert the numerical values to give

. (2)(3.2 % 109)[(1.4 x 10—5)f3()}/n}'#’2e_m,@“z
45

0.025)(3.2 x 107

ik )(4«3 X170~ o.s1164)

=79.3°C x=25¢cm, t=30s

Tl 2) =235

For the constant-heat-flux case the surface temperature after 30 s would be evaluated with x =0
in Equation (4-13a). Thus,

23(3. 3 7 -3 : 1/2
Tix=0)=35+ o 1;( WA ) =199.4°C

_14_



EXAMPLE 4-3 Pulsed F_nel'g;.' at Surface of Semi-Infinite Solid

An instanfaneous laser pulse of 10 MJ/ /m? is imposed on a slab of stainless steel having properties
of p=7800 Lcr;m- c=460J/kg-°C.ande=0.44 x 10> m “/s The slab is initially at a uniform
temperature of 40 °C. Estimate the temperature at the surface and at a depth of 2.0 mm after a time
of 2s.

B Solution /
This problem is a direct application of Equation (4-13b). We have Qp/A = 107 J/m? and at x =0

— T = Qp/Apc(nan)!?
— 107/(7800) (460)[7(0.44 x 1072)(2)1%3 = 530°C

and
Ty =40+ 530=570°C
Atx=20mm=0.002m,
T—Ti= {SSO)exp[“(U.OOZ)zj(4)(0.44 X 1(}_5}(2)] =473°€C
and

T=40+473=513°C

_15_



Heat Removal from Semi-Infinite Solid EXAMPLE 4-4

A large slab of aluminum at a uniform temperature of 200°C suddenly has its surface temperature
lowered 1o 70°C. What is the total heat removed from the slab per unit surface area when the
temperature at a depth 4.0 cm has dropped to 120°C?

B Solution
We first find the time required to attain the 120°C temperature and then integrate Equation (4-12)
to find the total heat removed during this time interval. For aluminum,

a=84x10"m?/s  k=215W/m-°C[124Btu/h-ft-°F]
We also have
1;=200°C  Tp=70°C  T(x.7)=120°C

Using Equation (4-8) gives
120 —70 L
200-70 2.far

From Figure 4-4 or Appendix A,

and
(0.04)2

e
(4)(0.3553)2(8.4 x 10-5)

=272

The total heat removed at the surface is obtained by integrating Equation (4-12):

Qq g0 ]T k(1 —T;) It
A g A 7 0 T 7 Yo%) o

37.72

= (2)(215)(70 — 200) [W

1/2
} =-21.13 x 10° I/m* [~1861 Bru/ft%]

_16_



Example 4-5. Sudden Exposure of Semi—Infinite Slab to Convection
The slab of Example 4-4 is suddenly exposed to a convection-surface
environment of 70 °C with a heat—transfer coefficient of 525 W/m?” - °C.
Calculate the time required for the temperature to reach 120 °C at the
depth of 4.0 cm for this circumstance.

Bl Solution : we may use Equation (4-15) or Figure 4-5 for this problem,
but Figure 4-5 is easier to apply because the time appears in two terms.
However, an iterative procedure is required because the time appears in

both of the variables h/Var/k and z/(2Var).

We seek the value of 7 such that
i 120 - 200

il =0.615 [al
T =00

We therefore try values of T and obtain readings of the temperature ratio from Figure 4-5 until
agreement with Equation () is reached. The iterations are listed below. Values of k and « are
obtained from Example 4-4.

hJjat x T=¥

Fi 4-5
i T Vias T =T, from Figure
1000 0.708 0.069 0.41
3000 1.226 0.040 0.61
4000 1.416 0.035 0.68 .

Consequently, the time required is approximately 3000 s.

_17_



Solutions have been worked out for other geometries. The most important cases are
those dealing with (1) plates whose thickness is small in relation to the other dimensions,
(2) cylinders where the diameter is small compared to the length, and (3) spheres. Results
of analyses for these geometries have been presented in graphical form by Heisler [2],
and nomenclature for the three casesisillustrated in Figure 4-6. In all cases the convection
environment temperatureisdesignated as T, and the center temperaturefor x =0o0r r =0is
To.Attimezero, each solidisassumedto haveauniforminitial temperature 7;. Temperatures
in the solids are given in Figures 4-7 to 4-13 as functions of time and spatial position. In
these charts we note the definitions

=T, 1) — Two or Tr, 1) — Teo
=T, —Teo
bo=To— T

If acenterline temperatureis desired, only one chart is required to obtain avaue for 6 and
then Tp. To determine an off-center temperature, two charts are required to calculate the
product

For exampl e, Figures4-7 and 4-10 would be empl oyed to cal culate an of f-center temperature
for an infinite plate.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in
Figures 4-14 to 4-16, where Qg representstheinitial internal energy content of the body in
reference to the environment temperature

Q0= pcV(T; — Tno) = pcV; [4-16]

In these figures Q isthe actual heat lost by the body intime .



Figure 4-6

]

-

| Nomenclature for one-dimensional solids suddenly subjected to convection
environment at 7o (a) infinite plate of thickness 2L; (b) infinite cylinder of
radius rq; (c) sphere of radius rg.

}/——/\/

> x
—

la— | —»-
To = centerlin

@

e i

etemperature T, = centerline axis temperature Ty = center temperature

(b) ©
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Figure 4-7 | Midplane temperature for an infinite plate of thickness 2L: (a) full scale.
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CHAPTER4 Unsteady-State Conduction

Figure 4-7 | (Continued). (b) expanded scale for 0 < Fo < 4, from Reference 2.
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(b)

If one considersthe solid asbehaving asalumped capacity during the cooling or heating
process, that is, small internal resistance compared to surface resistance, the exponential
cooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13
using the Biot-Fourier product as the abscissa. We note that the following parameters apply
for the bodies considered in the Heisler charts.

(A/V)int plate = L
(AV)inf cylinder = 2/ro
(A/V)sphere =3ro

Obvioudly, there are many other practical heating and cooling problems of interest. The
solutions for alarge number of cases are presented in graphical form by Schneider [7], and
readers interested in such calculations will find this reference to be of great utility.

TheBiot and Fourier Numbers

A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperature
profiles and heat flows may all be expressed in terms of two dimensionless parameters
called the Biot and Fourier numbers:

. . h
Biot number = Bi = %
. ot kt
Fourier number = Fo= — = —
s2 pes?

In these parameters s designates a characteristic dimension of the body; for the plateiit is
the half-thickness, whereas for the cylinder and sphere it is the radius. The Biot humber
comparestherelative magnitudes of surface-convection andinternal-conduction resistances
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Figure 4-8 | Axistemperature for an infinite cylinder of radius rg: (a) full scale.
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CHAPTER4 Unsteady-State Conduction

Figure 4-8 | (Continued). (b) expanded scale for 0 < Fo < 4, from Reference 2.
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to heat transfer. The Fourier modulus compares a characteristic body dimension with an
approximate temperature-wave penetration depth for agiven time 7.

A very low vaue of the Biot modulus means that internal-conduction resistance is
negligible in comparison with surface-convection resistance. This in turn implies that the
temperature will be nearly uniform throughout the solid, and its behavior may be approxi-
mated by the lumped-capacity method of analysis. It isinteresting to note that the exponent
of Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takes
theratio V/A asthe characteristic dimension s. Then,

hA _ ht  hs kt

—VT— =Bi Fo
ol

ocs % ocs?

Applicability of the Heisler Charts

The calculations for the Heisler charts were performed by truncating the infinite series
solutions for the problems into afew terms. This restricts the applicability of the charts to
values of the Fourier number greater than 0.2.

Fo=%'-02

2

S
For smaller values of this parameter the reader should consult the solutionsand charts given
in the references at the end of the chapter. Cal culations using the truncated series solutions
directly are discussed in Appendix C.
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Figure 4-9 | Center temperature for a sphere of radius rq: (a) full scale.
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Figure 4-11 | Temperature as afunction of axis temperaturein an
infinite cylinder of radius rqg, from Reference 2.
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Figure 4-12 | Temperature as afunction of center temperature for a
sphere of radius rg, from Reference 2.
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Figure 4-13 | Temperature variation with time for solids that may be
treated as lumped capacities. (a) 0 < BiFo < 10,
(b) 0.1 <BiFo< 1.0, (c) 0<BiFo<0.1.
Note: (AV)inf plate =1/ L, (A/V)inf cyl = 2/ro,
(A/V)sphere = 3fro. See Equations (4-5) and (4-6).

1
0.1
N
\\\
0.01 ¥
0 N
o |
0.001 by
N \\
\\\\
0.0001 ;
0.00001
0o 1 3 4 5 6 7 8 9 10
. h(ANV)T
BIFO—T
(@)
1
0.9 N
\\
08 AN
\\
N
07 :
0 N
o,
0.6 -~
05 RN
N,
0.4 —
™~
0.3
01 02 03 04 05 06 07 08 09
BiFo = —C—h(AéV)T
(b)

157



158

Figure 4-14 | Dimensionless heat 1oss O/ Qg of an infinite plane of thickness 2L with time,

Figure 4-13 | (Continued).
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CHAPTERA4 Unsteady-State Conduction

Figure 4-15 | Dimensionlesss heat loss O/ Q¢ of aninfinite cylinder of radius rg with time,
from Reference 6.
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Figure 4-16 | Dimensionless heat loss O/ Q¢ of a sphere of radius rg with time, from

Reference 6.
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Aluminum Plate Suddenly Exposed to Convection

A largeplate of aluminum 5.0 cmthick and initially at 200° C issuddenly exposed to the convection
environment of Example 4-5. Cal cul ate the temperature at adepth of 1.25 cm from one of the faces
1 min after the plate has been exposed to the environment. How much energy has been removed
per unit area from the plate in this time?

B Solution
The Heisler charts of Figures 4-7 and 4-10 may be used for solution of this problem. We first
calculate the center temperature of the plate, using Figure 4-7, and then use Figure 4-10to cal cul ate
the temperature at the specified x position. From the conditions of the problem we have

0 =T —Too=200—70=130 «=84x10">m%s [3.26ft¥h]

2L =5.0cm L=25cm t=1min=60s

k=215W/m-°C [124 Btu/h-ft-F]

h=525W/m?-°C [92.5Btu/h-ft?. °F]

x=25-125=125cm

Then
ar (8.4 x 1075)(60) k 215
ar _ — 7 _8064 —=—_""_ __ _1638
L2 (0.025)2 hL ~ (525)(0.025)
*_o1B 45
L 25
From Figure 4-7
% _ o6
0;

60 = To — To = (0.61)(130) = 79.3
From Figure 4-10 at x/L = 0.5,
A2 =0.98
and
0=T —Too=(0.98)(79.3) =77.7
T =77.7+70=147.7°C
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We compute the energy lost by the slab by using Figure 4-14. For this calculation we require the
following properties of aluminum:

p=2700kgm®  ¢=0.9kJ/kg-°C

For Figure 4-14 we need
h?2 525)2(8.4 x 10°)(60 hL  (525)(0.025
ot _ 527 @AxI07NE0) _ 3 AL _ODOD) 456
k2 (215)2 k 215
From Figure 4-14
L _om
0o
For unit area
(0] pcVo;
70 = S = pe@L)f;
= (2700)(900)(0.05)(130)
= 15.8 x 10% ym?

so that the heat removed per unit surface areais

% = (15.8 x 10°)(0.41) = 6.48 x 106 I/m?  [571 Btu/ft?]

Long Cylinder Suddenly Exposed to Convection

A long aluminum cylinder 5.0 cm in diameter and initially at 200°C is suddenly exposed to a
convection environment at 70°C and /1 = 525 W/m? - °C. Calculate the temperature at aradius of
1.25 cm and the heat lost per unit length 1 min after the cylinder is exposed to the environment.

H Solution

This problem is like Example 4-6 except that Figures 4-8 and 4-11 are employed for the solution.
We have

0i=T,— Too =200—70=130 a=84x10"°m%/s
ro=2.5cm t=1min=60s

k=215W/m-°C  h=525W/m?.°C  r=125cm
p=2700kg/m®  ¢=0.9kJkg-°C

We compute
8.4 x 10°)(60 k 215
or _GAxD VOO _goea K25 63
5 (0.025) hrg  (525)(0.025)
r_L12_ g
ro 25
From Figure 4-8
0—0 =0.38
0;
and from Figures 4-11 at r/rg=0.5
[%
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S0 that 0 oo
2207 _(0.38)(0.98)=0.372
6; 6; 6o

and
0=T — Ts = (0.372)(130) = 48.4

T=70+48.4=118.4°C

To compute the heat lost, we determine

hPar _ (525%84x10°9)(60) _ o hro _ (525)(0.025)

=0.061
k2 (215)2 k 215

Then from Figure 4-15
— =0.65

For unit length

@ _pe Vo,
L L

= penrdf; = (2700)(900)7(0.025)%(130) = 6.203 x 10° Im

and the actual heat lost per unit length is

% — (6.203 x 10%)(0.65) = 4.032 x 10° Jm  [116.5 Btuyft]






