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Now, we can obtain two following ordinary differential equations

X

+ XX =0
dz’ @
&Ey
Ty T AY=0
y

The value of A*> must be determined from the boundary conditions.
The solutions to eqn @ are

X = Acos \x + Bsin\zx

—\y _ o
Y= Ce ™+ DeV where {eA cosh Ay S{nhAy
e = coshAy + sinh\y

Finally, €43} (the general solution) is

T = (Acos Az + Bsin\z) (Ce™™ + D) -



(Case 1) Rectangular adiabatic plate with sinusoidal temperature
distribution on one edge.

T= Znsin(ﬂ)

y L
A
W /

T=0 at vy -=
T=0 a x-=

T=0 T=0 T=0 at x=L

L — 7= Tmsm(ﬂ—;) aty = W
T=0

Substituting these conditions into eqn ® to obtain the solution for T
We obtain from the first condition

(Acos Az + Bsin\z) (C+D) =0

-®
From the second condition, we obtain
A(Ce™ + D) =0 -@
From the third condition, we obtain
(AcosAL + Bsin \L) (Ce ™ + De™) = 0 -®
Egn. ® can be satisfied only if D= -C, and eqn. @ only if A=0
Substituting these results into eqn. gives
Ny Ny
(Bsin \L) (Ce ™ + DeM) = —2BCsinAL(%)
= —2BCsin ALsinhAy = 0 -©@

To satisfy this condition, sin AL must be zero, and sinAL = 0 results in
A= LLT[, where n = 1,23... (It should be noted that the value n=0 is

excluded because it would give a trivial solution, T=0)



Thus,
= (Acos\z + Bsinz) (Ce ™™ 4+ DeV) = Bsinx(Ce ™V — CeV)

= —2BCsin\x sinh\y  where \ = n—; (n=123.......)

There exists therefore a different solution for each integer n and each
solution has a separate integration constant ¢, (the constants are

combined into C,), summing these solutions, we get

R . nTx . nmy
T = EOnsm 17 sinh 7

n=1

Now, apply the last boundary condition to obtain

nt W
L

T, sin( ZCsm D7 sinh

m

which requires that C, = 0 for n>1. The final solution is therefore
T

. TT T T . o m
Tmsm(T) Csin— 7 sth O = —
Sll’lhT

Finally, the solution becomes

sinh(ﬂ—g) .
T(.’L’,y) == Tm—WSZTl(T)

. T
smh(T)
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—— ! isotherms

---------- : Heat flow lines
(dashed line)

Fig. Isotherms and heat flow lines for the adiabatic plate with

sinusoidal temperature distribution on one edge

Note : lines indicating the direction of heat flow are perpendicular to the

isotherms
(Case 1-1)
T=T,sin(-7") + Ty
i
W / T = Tl at X = 0
T =T, at y =0
T=T at x =1L
T=T T=T, T= Tmsin(%) + T, at y=W




Use the superposition principle below to solve this problem.
y Y

A T, = sin% A T

W W

0 0 T Ty

X
—

Thus, the solution to this problem is as follows

sinh(%y) i

T(az,y) =171, sz’n(ﬂ )+ 7]
i W L
smh(—L )

(Case 2) Rectangular plate with one edge at a uniform temperature,

all other edges at constant temperature

T =T, at x =0,
T =T,aty =0,
T =T, at x = L,
T=Tyaty =W
y
I Let © = T-T
W
©=0atx =0,
T=T, T=T, ©=0aty =0,
©=0atx =1
,___X ©=0aty =W

T-T, -

The general solution to this problem is given as



0 = (Acos\r + Bsin\x) (Ce™M + D)

Apply the first 3 boundary conditions and obtain

nmy

L

ZC sin——= sinh

And apply the fourth boundary condition into eqn @ to obtain

ZCsm duks sinhmTLW

Need to determine C,. This is a Fourier sine series of odd function and
the value of C, may be determined by expanding ©: in a Fourier series

over the internal 0 < x < L

%, S nm
- EC sin
. nrt W n=1 n L
sinh 7
2/ in L —372/L.n7rx
where, nwW sin— der = T o Osm I dXx
sinh
_ 2 , [ L nrz |t 4 0, ) _
=7 sinh nrt W —Ccos— . nm i o when n=1, 3, 5...
L L
-0 when n=2, 4, 6.

Now, substitute the above into eqn @ to obtain

R 4 0, . M nmy
o= :123 r gy, S s ()
n=135 sinh( )
L
. nmy
0 _ - 1T, _ oy 4 sin (77T sinh( L ) ®
0, 7,— T n=135.. 1T Sinh(mTW)

L



In other form as in the textbook (eqn 3-20 on page 81)

nmy

-1 2 — )”H-I-l . NTX sinh(=7= L )

- ;Z sin (——) — ~(13)
:— 1 = sinh ( )

NOTE 1: Fourier sine series of an odd function f(x) having a length L

S, . (NTT
—nz::lbnsm( 7 )

nnr
)

2 L
Then, b, =—/ f(z)sin(
LJ,

NOTE 2: Fourier cosine series of an even function f(x) with a length L

Fa) = ay+ 3 aycos (F7)
m=1

1 L 2 L
Then, a,= ffo f(z)dx, a, = Zfo cos (%)dx

(Case 3) The rectangular plate with more than one edge at a
specified temperature

The figure illustrates a case in which the edge at vy = 0 and y = W are

held at two different temperatures Ty, and T., respectively, while the



other edges are maintained at T, Since the governing equation for the
temperature distribution is linear, the additive principle of superposition
may be applied.

Thus, the temperature distribution may be obtained by adding the
solution obtained by replacing T2 = Ty and T; = T in eqn (13) to the
solution obtained from replacing Ty = T¢-T, T1 = 0, and y = W-y in
eqn (13)

y y
by I
W W
T-T, A T=T. =+ T=0 B T=0
T-T, - T-ToT, -

Solution for A is given as

nmy
T— azzi )”H-I-l (mrx) sinh (=7~ L )
T, — T = ., s ) nt W
inh( )
L
Solution for B is given as
©0 n+1 Sinh(nﬂ-(W_ ))
:zz +182n(n7rx) L
T — T L ) nt W
¢ sinh ( 7 )

Thus, solution for A + B becomes



sinh (22Y)
200,-1T,) & (—1)""'+1 . nmz L
= T Z n sin ) nt W
n=1 sinh ( )
L
mr(W—y)
207,-1T,) & (—1)"" ' +1 . nmz nh( L )
+ T Z n sin ) ntW
n=1 :
inh( 7 )
) nmwx
o  1\n+l1 Sll’lh(—) i
_2 Z( )" 41 L {(Tb_Ta)Sinh(w)Jr(TC_Ta)sinh(M)}
T = . nmt W L L
sinh ( )
L
+ T

(Casel-A) A sinusoidal temperature distribution is applied at y=0.

It is similar to Casel where the temperature distribution is applied
at y=W.

--\<

T=0

T=0 T=0

V.

. TTr
ZnSIHT

Solution: y needs to be replaced by W-y in the solution to Case 1



) m(W—
L v
Thus, 7(x,y) =T, Sin—
. W L

smh—L

(Case 4) Four sides of the rectangular are at different temperature

W T
T4 TZ
X
Ty L
\[}
I i I I
Ty 0 0 0

x exchnge with y
y is replacedby W—y (x is replacedby L — x

T, is replaced by 77 |w exchnge with L
Ty = 0 at solution ; Ty is replacedby T 15 is replacedby T,
for Case2— Fq(13) T, is replacedby T,

in the solution 1 in the solution 2
in the solution 1



(b)

Figure 3-3a shows an element used for curvilinear square( Ax= Ay)

analysis of two—dimensional heat flow.

The heat flow across the curvilinear section (Fig. 3-3b) with the depth L
of material is given by Fourier’'s law

AT
The heat flow is the same through each section within this heat—flow
lane and the total heat flow is the sum of the heat flows through all the

lanes.
If Ae=~Ay, q = —kLAT

Since the heat flow is constant, the A7 across each element must be the
same within the same heat-flow lane. And the AT across one element is
given by
AT, T,—T,

N N

where N 1is the number of temperature increments between the inner

AT =




surface at T; and the outer surface at T,

Now, the heat transfer rate for one heat flow lane becomes

kT AT, all
€ N
And for M heat flow lanes, the total heat transfer rate becomes
M .
Gota = 5 KLATy  where, S'= —(conduction shape factor)

AT
Thus, Qg = ESAT,; = and a thermal resistance due to a

all
1/kS

2-dimensional heat conduction is Rsp wng) = 1/kS

3-4 The Conduction Shape Factor (A X FZAF, S = %)

In order to calculate the heat transfer rate in the two-dimensional system
having a depth of L, we need to construct curvilinear square plots as
shown in Fig. 3-3 and count the number of temperature increments and

heat-flow lanes. Care must be taken to construct the plot so that

Ax= Ay and the lines are perpendicular.

For a convenience of analysis we consider only 1/4 section in the corner of
the entire body in Fig. 3-3. The number of temperature increments
between the inner and outer surfaces is about N = 4, while the number of
heat-flow lanes for the corner section may be estimated as M = 8.2. The
total number of heat-flow lanes is four times this value, or 4 x 8.2 = 32.8.
The ratio M/N is thus 32.8/4 = 82 for the whole body. This ratio will be

called the conduction shape factor per unit depth.

The accuracy of this method is dependent entirely on the skill of the
person sketching the curvilinear squares. Even a crude sketch, however,
can frequently help to give fairly good estimates of the temperatures that

will occur in a body. The values of S have been worked out for several

geometries and are summarized in Table 3-1 on pages 84-86.




3-4-1 Procedure for Constructing the Curviliner Square Plot

Gy

Figure 3-4-1. Two-dimensional conduction in a square channel of length L
(a) symmetry planes, (b) curvilinear square plot, (c) typical curvilinear square
* There are 5 heat flow lanes (M=5) and 6 isotherms (N=6)

Fig. 3-4-1 shows a square, two—dimensional channel whose inner and
outer surfaces are maintained at T; and Ty, respectively. A cross section
of the channel is shown in Fig. 3-4-1(a). A procedure for constructing the

curvilinear-square plots i1s enumerated as follows.

1. Identify all relevant lines of symmetry. Such lines are determined by
thermal, as well as geometrical conditions. For the square channel of Fig.
3-4-1(a), such lines include the designated vertical, horizontal, and
diagonal lines. For this system it is therefore possible to consider only

one—eighth of the configuration, as shown in Fig. 3-4-1(h).

2. Lines of symmetry are adiabatic in the sense that there can be no heat

transfer in a direction perpendicular to the lines. They are therefore heat



flow lines and should be treated as such. Since there is no heat flow in a
direction perpendicular to a heat flow line, such a line can be termed an
adiabat.

3. After all known lines of constant temperature associated with the
system boundaries have been identified, an attempt should be made to
sketch lines of constant temperature within the system. Note that

1isotherms should always be perpendicular to adiabats.

4, The heat flow lines should then be drawn with an eye toward creating
a network of curvilinear squares. This is done by having the heat flow
lines and isotherms intersect at right angles and by requiring Ax=~ Ay . It
1s often impossible to satisfy this second requirement exactly, and it is
more realistic to strive for equivalence between the sums of the opposite
sides of each square, as shown in Fig. 3-4-1(c). Assigning the x
coordinate to the direction of heat flow and the y coordinate to the

direction normal to this flow, the requirement may be expressed as

ab +cd ~ Ay = ac+bd

Ar =
v 2 2

It is difficult to create a satisfactory network of curvilinear squares in the
first attempt, and numerous iterations must often be made. This
trial-and-error process involves adjusting the isotherms and adiabats until
satisfactory curvilinear squares are obtained for most of the network. Once
the curvilinear-square plot has been obtained, it may be used to infer the
temperature distribution in the medium. From a simple analysis, the heat

transfer rate may then be obtained.



O In a two-dimensional syatem, the conduction heat
transfer can be expressed with a conduction shape factor
(S) as follows:

q=kSAT), where S(m)

The values of S are summarized Table 3-1 on pages 84-86.
O For a three-dimensional wall, as in a furnace, separate
conduction shape factors are used to calculate the heat flow

through the edge and corner sections.

When all the interior dimensions are greater than one-fifth

of the wall thickness (D > %L)v
Swa]]= % N Sedge=0.54D N Scorner=0.15L

A= area of wall, L= wall thickness, D= length of edge



Figure 3-4 | Sketch illustrating dimensions for use in calculating
three-dimensional shape factors.
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