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그림 곡면 상에서의 속도경계층 형성 및 박리 현상.



그림 난류가 유동의 박리를 지연시킨다12.

그림 원통에 교차하는 대표적인 유동의 형태11.
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C H A P T E R 5 Principles of Convection 231

would have an important influence on convection heat transfer since these magnitudes relate
the velocity distribution to the temperature distribution. This is exactly the case, and we
shall see the role that these parameters play in the subsequent discussion.

5-6 THE THERMAL BOUNDARY LAYER
Just as the hydrodynamic boundary layer was defined as that region of the flow where
viscous forces are felt, a thermal boundary layer may be defined as that region where
temperature gradients are present in the flow. These temperature gradients would result
from a heat-exchange process between the fluid and the wall.

Consider the system shown in Figure 5-7. The temperature of the wall is Tw, the
temperature of the fluid outside the thermal boundary layer is T∞, and the thickness of the
thermal boundary layer is designated as δt . At the wall, the velocity is zero, and the heat
transfer into the fluid takes place by conduction. Thus the local heat flux per unit area, q′′, is

q

A
= q′′ = −k ∂T

∂y

]
wall

[5-27]

From Newton’s law of cooling [Equation (1-8)],

q′′ =h(Tw− T∞) [5-28]

where h is the convection heat-transfer coefficient. Combining these equations, we have

h= −k(∂T/∂y)wall

Tw− T∞
[5-29]

so that we need only find the temperature gradient at the wall in order to evaluate the
heat-transfer coefficient. This means that we must obtain an expression for the temperature
distribution. To do this, an approach similar to that used in the momentum analysis of the
boundary layer is followed.

The conditions that the temperature distribution must satisfy are

T = Tw at y= 0 [a]
∂T

∂y
= 0 at y= δt [b]

T = T∞ at y= δt [c]

Figure 5-7 Temperature profile in the
thermal boundary layer.
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232 5-6 The Thermal Boundary Layer

Figure 5-8 Control volume for integral energy analysis of
laminar boundary flow.

Tw

H

δ

δ

t

dx

T∞u∞

u

A A

dqw=–k dx
w

y

x

1 2

  y∂
∂T

and by writing Equation (5-25) at y= 0 with no viscous heating we find

∂2T

∂y2
= 0 at y= 0 [d]

since the velocities must be zero at the wall.
Conditions (a) to (d ) may be fitted to a cubic polynomial as in the case of the velocity

profile, so that
θ

θ∞
= T − Tw
T∞ − Tw = 3

2

y

δt
− 1

2

(
y

δt

)3

[5-30]

where θ= T − Tw. There now remains the problem of finding an expression for δt , the
thermal-boundary-layer thickness. This may be obtained by an integral analysis of the
energy equation for the boundary layer.

Consider the control volume bounded by the planes 1, 2, A-A, and the wall as shown in
Figure 5-8. It is assumed that the thermal boundary layer is thinner than the hydrodynamic
boundary layer, as shown. The wall temperature is Tw, the free-stream temperature is T∞,
and the heat given up to the fluid over the length dx is dqw. We wish to make the energy
balance

Energy convected in + viscous work within element

+ heat transfer at wall = energy convected out [5-31]

The energy convected in through plane 1 is

ρcp

∫ H

0
uT dy

and the energy convected out through plane 2 is

ρcp

(∫ H

0
uT dy

)
+ d

dx

(
ρcp

∫ H

0
uT dy

)
dx

The mass flow through plane A-A is

d

dx

(∫ H

0
ρu dy

)
dx
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Figure 5-9 Hydrodynamic and thermal boundary layers on a
flat plate. Heating starts at x= x0.

δtδ
δ

x0

y

x
u∞

T∞

and this carries with it an energy equal to

cpT∞
d

dx

(∫ H

0
ρu dy

)
dx

The net viscous work done within the element is

μ

[∫ H

0

(
du

dy

)2

dy

]
dx

and the heat transfer at the wall is

dqw= −k dx ∂T
∂y

]
w

Combining these energy quantities according to Equation (5-31) and collecting terms gives

d

dx

[∫ H

0
(T∞ − T )u dy

]
+ μ

ρcp

[∫ H

0

(
du

dy

)2

dy

]
=α ∂T

dy

]
w

[5-32]

This is the integral energy equation of the boundary layer for constant properties and constant
free-stream temperature T∞.

To calculate the heat transfer at the wall, we need to derive an expression for the thermal-
boundary-layer thickness that may be used in conjunction with Equations (5-29) and (5-30)
to determine the heat-transfer coefficient. For now, we neglect the viscous-dissipation term;
this term is very small unless the velocity of the flow field becomes very large. And the
calculation of high-velocity heat transfer will be considered later.

The plate under consideration need not be heated over its entire length. The situation
that we shall analyze is shown in Figure 5-9, where the hydrodynamic boundary layer
develops from the leading edge of the plate, while heating does not begin until x= x0.

Inserting the temperature distribution Equation (5-30) and the velocity distribution
Equation (5-19) into Equation (5-32) and neglecting the viscous-dissipation term, gives

d

dx

[∫ H

0
(T∞ − T )u dy

]
= d

dx

[∫ H

0
(θ∞ − θ)u dy

]

= θ∞u∞
d

dx

{∫ H

0

[
1 − 3

2

y

δt
+ 1

2

(
y

δt

)3
][

3

2

y

δ
− 1

2

(y
δ

)3
]
dy

}

= α
∂T

∂y

]
y=0

= 3αθ∞
2δt
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234 5-6 The Thermal Boundary Layer

Let us assume that the thermal boundary layer is thinner than the hydrodynamic boundary
layer. Then we only need to carry out the integration to y= δt since the integrand is zero
for y> δt . Performing the necessary algebraic manipulation, carrying out the integration,
and making the substitution ζ= δt/δ yields

θ∞u∞
d

dx

[
δ

(
3

20
ζ2 − 3

280
ζ4
)]

= 3

2

αθ∞
δζ

[5-33]

Because δt < δ, ζ< 1, and the term involving ζ4 is small compared with the ζ2 term, we
neglect the ζ4 term and write

3

20
θ∞u∞

d

dx
(δζ2)= 3

2

αθ∞
ζδ

[5-34]

Performing the differentiation gives

1

10
u∞

(
2δζ

dζ

dx
+ ζ2 dδ

dx

)
= α

δζ

or
1

10
u∞

(
2δ2ζ2 dζ

dx
+ ζ3δ

dδ

dx

)
=α

But

δ dδ= 140

13

ν

u∞
dx

and

δ2 = 280

13

νx

u∞
so that we have

ζ3 + 4xζ2 dζ

dx
= 13

14

α

ν
[5-35]

Noting that

ζ2 dζ

dx
= 1

3

d

dx
ζ3

we see that Equation (5-35) is a linear differential equation of the first order in ζ3, and the
solution is

ζ3 =Cx−3/4 + 13

14

α

ν

When the boundary condition

δt = 0 at x= x0

ζ= 0 at x= x0

is applied, the final solution becomes

ζ= δt

δ
= 1

1.026
Pr−1/3

[
1 −

(x0

x

)3/4
]1/3

[5-36]

where
Pr = ν

α
[5-37]

has been introduced. The ratio ν/α is called the Prandtl number after Ludwig Prandtl, the
German scientist who introduced the concepts of boundary-layer theory.
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When the plate is heated over the entire length, x0 = 0, and

δt

δ
= ζ= 1

1.026
Pr−1/3 [5-38]

In the foregoing analysis the assumption was made that ζ< 1. This assumption is
satisfactory for fluids having Prandtl numbers greater than about 0.7. Fortunately, most
gases and liquids fall within this category. Liquid metals are a notable exception, however,
since they have Prandtl numbers of the order of 0.01.

The Prandtl number ν/α has been found to be the parameter that relates the relative
thicknesses of the hydrodynamic and thermal boundary layers. The kinematic viscosity of
a fluid conveys information about the rate at which momentum may diffuse through the
fluid because of molecular motion. The thermal diffusivity tells us the same thing in regard
to the diffusion of heat in the fluid. Thus the ratio of these two quantities should express
the relative magnitudes of diffusion of momentum and heat in the fluid. But these diffusion
rates are precisely the quantities that determine how thick the boundary layers will be for a
given external flow field; large diffusivities mean that the viscous or temperature influence
is felt farther out in the flow field. The Prandtl number is thus the connecting link between
the velocity field and the temperature field.

The Prandtl number is dimensionless when a consistent set of units is used:

Pr = ν

α
= μ/ρ

k/ρcp
= cpμ

k
[5-39]

In the SI system a typical set of units for the parameters would beμ in kilograms per second
per meter, cp in kilojoules per kilogram per Celsius degree, and k in kilowatts per meter
per Celsius degree. In the English system one would typically employ μ in pound mass per
hour per foot, cp in Btu per pound mass per Fahrenheit degree, and k in Btu per hour per
foot per Fahrenheit degree.

Returning now to the analysis, we have

h= −k(∂T/∂y)w
Tw− T∞

= 3

2

k

δt
= 3

2

k

ζδ
[5-40]

Substituting for the hydrodynamic-boundary-layer thickness from Equation (5-21) and
using Equation (5-36) gives

hx = 0.332k Pr1/3
(u∞
νx

)1/2
[

1 −
(x0

x

)3/4
]−1/3

[5-41]

The equation may be nondimensionalized by multiplying both sides by x/k, producing the
dimensionless group on the left side,

Nux = hxx

k
[5-42]

called the Nusselt number after Wilhelm Nusselt, who made significant contributions to the
theory of convection heat transfer. Finally,

Nux = 0.332Pr1/3 Re1/2
x

[
1 −

(x0

x

)3/4
]−1/3

[5-43]

or, for the plate heated over its entire length, x0 = 0 and

Nux = 0.332Pr1/3 Re1/2
x [5-44]
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236 5-6 The Thermal Boundary Layer

Equations (5-41), (5-43), and (5-44) express the local values of the heat-transfer coefficient
in terms of the distance from the leading edge of the plate and the fluid properties. For the
case where x0 = 0 the average heat-transfer coefficient and Nusselt number may be obtained
by integrating over the length of the plate:

h=
∫ L

0 hx dx∫ L
0 dx

= 2hx=L [5-45a]

For a plate where heating starts at x= x0, it can be shown that the average heat transfer
coefficient can be expressed as

hx0−L
hx=L

= 2L
1 − (x0/L)

3/4

L− x0
[5-45b]

In this case, the total heat transfer for the plate would be

qtotal =hx0−L(L− x0)(Tw− T∞)

assuming the heated section is at the constant temperature Tw. For the plate heated over the
entire length,

NuL= hL

k
= 2 Nux=L [5-46a]

or

NuL= hL

k
= 0.664 Re1/2

L Pr1/3 [5-46b]

where

ReL= ρu∞L
μ

The reader should carry out the integrations to verify these results.
The foregoing analysis was based on the assumption that the fluid properties were

constant throughout the flow. When there is an appreciable variation between wall and
free-stream conditions, it is recommended that the properties be evaluated at the so-called
film temperature Tf , defined as the arithmetic mean between the wall and free-stream
temperature,

Tf = Tw+ T∞
2

[5-47]

An exact solution to the energy equation is given in Appendix B. The results of the
exact analysis are the same as those of the approximate analysis given above.

Constant Heat Flux

The above analysis has considered the laminar heat transfer from an isothermal surface. In
many practical problems the surface heat flux is essentially constant, and the objective is
to find the distribution of the plate-surface temperature for given fluid-flow conditions. For
the constant-heat-flux case it can be shown that the local Nusselt number is given by

Nux = hx

k
= 0.453 Re1/2

x Pr1/3 [5-48]

which may be expressed in terms of the wall heat flux and temperature difference as

Nux = qwx

k(Tw− T∞)
[5-49]
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The average temperature difference along the plate, for the constant-heat-flux condition,
may be obtained by performing the integration

Tw− T∞ = 1

L

∫ L

0
(Tw− T∞) dx= 1

L

∫ L

0

qwx

k Nux
dx

= qwL/k

0.6795 Re1/2
L Pr1/3

[5-50]

or

qw= 3
2hx=L(Tw− T∞)

In these equations qw is the heat flux per unit area and will have the units of watts
per square meter (W/m2) in SI units or British thermal units per hour per square foot
(Btu/h · ft2) in the English system. Note that the heat flux qw= q/A is assumed constant
over the entire plate surface.

Other Relations

Equation (5-44) is applicable to fluids having Prandtl numbers between about 0.6 and 50.
It would not apply to fluids with very low Prandtl numbers like liquid metals or to high-
Prandtl-number fluids like heavy oils or silicones. For a very wide range of Prandtl numbers,
Churchill and Ozoe [9] have correlated a large amount of data to give the following relation
for laminar flow on an isothermal flat plate:

Nux = 0.3387 Re1/2
x Pr1/3

[
1 +

(
0.0468

Pr

)2/3
]1/4

for Rex Pr> 100 [5-51]

For the constant-heat-flux case, 0.3387 is changed to 0.4637 and 0.0468 is changed to
0.0207. Properties are still evaluated at the film temperature.

Isothermal Flat Plate Heated Over Entire Length EXAMPLE 5-4

For the flow system in Example 5-3 assume that the plate is heated over its entire length to a
temperature of 60◦C. Calculate the heat transferred in (a) the first 20 cm of the plate and (b) the
first 40 cm of the plate.

Solution
The total heat transfer over a certain length of the plate is desired; so we wish to calculate average
heat-transfer coefficients. For this purpose we use Equations (5-44) and (5-45), evaluating the
properties at the film temperature:

Tf = 27 + 60

2
= 43.5◦C = 316.5 K [110.3◦F]

From Appendix A the properties are

ν= 17.36 × 10−6 m2/s [1.87 × 10−4 ft2/s]
k= 0.02749 W/m · ◦C [0.0159 Btu/h · ft · ◦F]

Pr = 0.7

cp= 1.006 kJ/kg · ◦C [0.24 Btu/lbm · ◦F]
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238 5-6 The Thermal Boundary Layer

At x= 20 cm

Rex= u∞x
ν

= (2)(0.2)

17.36 × 10−6
= 23,041

Nux= hxx

k
= 0.332Re1/2

x Pr1/3

= (0.332)(23,041)1/2(0.7)1/3 = 44.74

hx= Nux

(
k

x

)
= (44.74)(0.02749)

0.2

= 6.15 W/m2 · ◦C [1.083 Btu/h · ft2 · ◦F]

The average value of the heat-transfer coefficient is twice this value, or

h= (2)(6.15)= 12.3 W/m2 · ◦C [2.17 Btu/h · ft2 · ◦F]

The heat flow is
q=hA(Tw− T∞)

If we assume unit depth in the z direction,

q= (12.3)(0.2)(60 − 27)= 81.18 W [277 Btu/h]

At x= 40 cm

Rex= u∞x
ν

= (2)(0.4)

17.36 × 10−6
= 46,082

Nux= (0.332)(46,082)1/2(0.7)1/3 = 63.28

hx= (63.28)(0.02749)

0.4
= 4.349 W/m2 · ◦C

h= (2)(4.349)= 8.698 W/m2 · ◦C [1.53 Btu/h · ft2 · ◦F]
q= (8.698)(0.4)(60 − 27)= 114.8 W [392 Btu/h]

EXAMPLE 5-5 Flat Plate with Constant Heat Flux

A 1.0-kW heater is constructed of a glass plate with an electrically conducting film that produces
a constant heat flux. The plate is 60 cm by 60 cm and placed in an airstream at 27◦C, 1 atm with
u∞ = 5 m/s. Calculate the average temperature difference along the plate and the temperature
difference at the trailing edge.

Solution
Properties should be evaluated at the film temperature, but we do not know the plate temperature.
So for an initial calculation, we take the properties at the free-stream conditions of

T∞ = 27◦C = 300 K

ν= 15.69 × 10−6 m2/s Pr = 0.708 k= 0.02624 W/m · ◦C

ReL= (0.6)(5)

15.69 × 10−6
= 1.91 × 105

From Equation (5-50) the average temperature difference is

Tw− T∞ = [1000/(0.6)2](0.6)/0.02624

0.6795(1.91 × 105)1/2(0.708)1/3
= 240◦C
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Now, we go back and evaluate properties at

Tf = 240 + 27 + 27

2
= 147◦C = 420 K

and obtain

ν= 28.22 × 10−6 m2/s Pr = 0.687 k= 0.035 W/m · ◦C

ReL= (0.6)(5)

28.22 × 10−6
= 1.06 × 105

Tw− T∞ = [1000/(0.6)2](0.6)/0.035

0.6795(1.06 × 105)1/2(0.687)1/3
= 243◦C

At the end of the plate (x=L= 0.6 m) the temperature difference is obtained from Equations
(5-48) and (5-50) with the constant 0.453 to give

(Tw− T∞)x=L= (243.6)(0.6795)

0.453
= 365.4◦C

An alternate solution would be to base the Nusselt number on Equation (5-51).

Plate with Unheated Starting Length EXAMPLE 5-6

Air at 1 atm and 300 K flows across a 20-cm-square plate at a free-stream velocity of 20 m/s. The
last half of the plate is heated to a constant temperature of 350 K. Calculate the heat lost by the
plate.

Solution
First we evaluate the air properties at the film temperature

Tf = (Tw+ T∞)/2 = 325 K

and obtain
v= 18.23 × 10−6m2/s k= 0.02814 W/m · ◦C Pr = 0.7

At the trailing edge of the plate the Reynolds number is

ReL= u∞L/v= (20)(0.2)/18.23 × 10−6 = 2.194 × 105

or, laminar flow over the length of the plate.
Heating does not start until the last half of the plate, or at a position x0 = 0.1 m. The local

heat-transfer coefficient for this condition is given by Equation (5-41):

hx= 0.332k Pr1/3(u∞/vx)1/2[1 − (x0/x)
0.75]−1/3 [a]

Inserting the property values along with x0 = 0.1 gives

hx= 8.6883x−1/2(1 − 0.17783x−0.75)−1/3 [b]

The plate is 0.2 m wide so the heat transfer is obtained by integrating over the heated length
x0<x<L

q= (0.2)(Tw− T∞)
∫ L= 0.2

x0 = 0.1
hxdx [c]
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Inserting Equation (b) in Equation (c) and performing the numerical integration gives

q= (0.2)(8.6883)(0.4845)(350 − 300)= 421 W [d]

The average value of the heat-transfer coefficient over the heated length is given by

h= q/(Tw− T∞)(L− x0)W = 421/(350 − 300)(0.2 − 0.1)(0.2)= 421 W/m2 · ◦C

where W is the width of the plate.
An easier calculation can be made by applying Equation (5-45b) to determine the average

heat transfer coefficient over the heated portion of the plate. The result is

h= 425.66 W/m2 · ◦C and q= 425.66 W

which indicates, of course, only a small error in the numerical integeration.

EXAMPLE 5-7 Oil Flow Over Heated Flat Plate

Engine oil at 20◦C is forced over a 20-cm-square plate at a velocity of 1.2 m/s. The plate is heated
to a uniform temperature of 60◦C. Calculate the heat lost by the plate.

Solution
We first evaluate the film temperature:

Tf = 20 + 60

2
= 40◦C

The properties of engine oil are

ρ = 876 kg/m3 ν = 0.00024 m2/s
k = 0.144 W/m · ◦C Pr = 2870

The Reynolds number is

Re = u∞L
ν

= (1.2)(0.2)

0.00024
= 1000

Because the Prandtl number is so large we will employ Equation (5-51) for the solution. We see
that hx varies with x in the same fashion as in Equation (5-44), that is, hx∝ x−1/2, so that we
get the same solution as in Equation (5-45) for the average heat-transfer coefficient. Evaluating
Equation (5-51) at x= 0.2 gives

Nux= (0.3387)(1000)1/2(2870)1/3[
1 +

(
0.0468

2870

)2/3
]1/4

= 152.2

and

hx= (152.2)(0.144)

0.2
= 109.6 W/m2 · ◦C

The average value of the convection coefficient is

h= (2)(109.6)= 219.2 W/m2 · ◦C

so that the total heat transfer is

q=hA(Tw− T∞)= (219.2)(0.2)2(60 − 20)= 350.6 W
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5-7 THE RELATION BETWEEN FLUID
FRICTION AND HEAT TRANSFER

We have already seen that the temperature and flow fields are related. Now we seek an
expression whereby the frictional resistance may be directly related to heat transfer.

The shear stress at the wall may be expressed in terms of a friction coefficient Cf :

τw=Cf ρu
2∞

2
[5-52]

Equation (5-52) is the defining equation for the friction coefficient. The shear stress may
also be calculated from the relation

τw=μ ∂u

∂y

]
w

Using the velocity distribution given by Equation (5-19), we have

τw= 3

2

μu∞
δ

and making use of the relation for the boundary-layer thickness gives

τw= 3

2

μu∞
4.64

(u∞
νx

)1/2
[5-53]

Combining Equations (5-52) and (5-53) leads to

Cfx

2
= 3

2

μu∞
4.64

(u∞
νx

)1/2 1

ρu2∞
= 0.323 Re−1/2

x [5-54]

The exact solution of the boundary-layer equations yields

Cfx

2
= 0.332 Re−1/2

x [5-54a]

Equation (5-44) may be rewritten in the following form:

Nux
Rex Pr

= hx

ρcpu∞
= 0.332 Pr−2/3 Re−1/2

x

The group on the left is called the Stanton number,

Stx = hx

ρcpu∞

so that

Stx Pr2/3 = 0.332 Re1/2
x [5-55]

Upon comparing Equations (5-54) and (5-55), we note that the right sides are alike except
for a difference of about 3 percent in the constant, which is the result of the approx-
imate nature of the integral boundary-layer analysis. We recognize this approximation

admin
텍스트에 대한 주석
To be exact, should be  Cf(x)

admin
줄 긋기

admin
텍스트에 대한 주석
(Rex)-1/2

admin
텍스트에 대한 주석
delta/x=5.0(Rex)-1/2

admin
텍스트에 대한 주석
Approximate Solution is used: 
delta/x = 4.64(Rex)-1/2




hol29362_Ch05 10/15/2008 16:48

# 101675 Cust: McGraw-Hill Au: Holman Pg. No.242 K/PMS 293

Title: Heat Transfer 10/e Server: Short / Normal / Long

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

242 5-7 The Relation Between Fluid Friction and Heat Transfer

and write

StxPr2/3 = Cfx

2
[5-56]

Equation (5-56), called the Reynolds-Colburn analogy, expresses the relation between fluid
friction and heat transfer for laminar flow on a flat plate. The heat-transfer coefficient
thus could be determined by making measurements of the frictional drag on a plate under
conditions in which no heat transfer is involved.

It turns out that Equation (5-56) can also be applied to turbulent flow over a flat plate
and in a modified way to turbulent flow in a tube. It does not apply to laminar tube flow. In
general, a more rigorous treatment of the governing equations is necessary when embarking
on new applications of the heat-transfer–fluid-friction analogy, and the results do not always
take the simple form of Equation (5-56). The interested reader may consult the references
at the end of the chapter for more information on this important subject. At this point, the
simple analogy developed above has served to amplify our understanding of the physical
processes in convection and to reinforce the notion that heat-transfer and viscous-transport
processes are related at both the microscopic and macroscopic levels.

EXAMPLE 5-8 Drag Force on a Flat Plate

For the flow system in Example 5-4 compute the drag force exerted on the first 40 cm of the plate
using the analogy between fluid friction and heat transfer.

Solution
We use Equation (5-56) to compute the friction coefficient and then calculate the drag force. An
average friction coefficient is desired, so

St Pr2/3 = Cf

2
[a]

The density at 316.5 K is

ρ= p

RT
= 1.0132 × 105

(287)(316.5)
= 1.115 kg/m3

For the 40-cm length

St = h

ρcpu∞
= 8.698

(1.115)(1006)(2)
= 3.88 × 10−3

Then from Equation (a)

Cf

2
= (3.88 × 10−3)(0.7)2/3 = 3.06 × 10−3

The average shear stress at the wall is computed from Equation (5-52):

τw=Cf ρu
2∞
2

= (3.06 × 10−3)(1.115)(2)2

= 0.0136 N/m2

The drag force is the product of this shear stress and the area,

D= (0.0136)(0.4)= 5.44 mN [1.23 × 10−3 lbf ]
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5-8 TURBULENT-BOUNDARY-LAYER
HEAT TRANSFER

Consider a portion of a turbulent boundary layer as shown in Figure 5-10. A very thin region
near the plate surface has a laminar character, and the viscous action and heat transfer take
place under circumstances like those in laminar flow. Farther out, at larger y distances
from the plate, some turbulent action is experienced, but the molecular viscous action and
heat conduction are still important. This region is called the buffer layer. Still farther out,
the flow is fully turbulent, and the main momentum- and heat-exchange mechanism is one
involving macroscopic lumps of fluid moving about in the flow. In this fully turbulent region
we speak of eddy viscosity and eddy thermal conductivity. These eddy properties may be
10 to 20 times as large as the molecular values.

The physical mechanism of heat transfer in turbulent flow is quite similar to that in
laminar flow; the primary difference is that one must deal with the eddy properties instead
of the ordinary thermal conductivity and viscosity. The main difficulty in an analytical
treatment is that these eddy properties vary across the boundary layer, and the specific
variation can be determined only from experimental data. This is an important point. All
analyses of turbulent flow must eventually rely on experimental data because there is no
completely adequate theory to predict turbulent-flow behavior.

If one observes the instantaneous macroscopic velocity in a turbulent-flow system,
as measured with a laser anemometer or other sensitive device, significant fluctuations
about the mean flow velocity are observed as indicated in Figure 5-11, where u is designated
as the mean velocity and u′ is the fluctuation from the mean. The instantaneous velocity is
therefore

u=u+ u′ [5-57]

The mean value of the fluctuation u′ must be zero over an extended period for steady flow
conditions. There are also fluctuations in the y component of velocity, so we would write

v= v+ v′ [5-58]

The fluctuations give rise to a turbulent-shear stress that may be analyzed by referring to
Figure 5-12.

For a unit area of the plane P-P, the instantaneous turbulent mass-transport rate across
the plane is ρv′. Associated with this mass transport is a change in the x component of

Figure 5-10 Velocity profile in turbulent boundary layer on a
flat plate.
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Figure 5-11 Turbulent fluctuations with time.
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Figure 5-12 Turbulent shear stress and mixing length.
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velocity u′. The net momentum flux per unit area, in the x direction, represents the turbulent-
shear stress at the plane P-P, or ρv′u′. When a turbulent lump moves upward (v′> 0), it
enters a region of higher u and is therefore likely to effect a slowing-down fluctuation in u′,
that is, u′< 0. A similar argument can be made for v′< 0, so that the average turbulent-shear
stress will be given as

τt = −ρv′u′ [5-59]

We must note that even though v′ = u′ = 0, the average of the fluctuation product u′v′ is
not zero.

Eddy Viscosity and the Mixing Length

Let us define an eddy viscosity or eddy diffusivity for momentum εM such that

τt = −ρv′u′ = ρεM du
dy

[5-60]

We have already likened the macroscopic transport of heat and momentum in turbulent
flow to their molecular counterparts in laminar flow, so the definition in Equation (5-60) is a
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natural consequence of this analogy. To analyze molecular-transport problems one normally
introduces the concept of mean free path, or the average distance a particle travels between
collisions. Prandtl introduced a similar concept for describing turbulent-flow phenomena.
The Prandtl mixing length is the distance traveled, on the average, by the turbulent lumps
of fluid in a direction normal to the mean flow.

Let us imagine a turbulent lump that is located a distance � above or below the plane
P-P, as shown in Figure 5-12. These lumps of fluid move back and forth across the plane
and give rise to the eddy or turbulent-shear-stress effect. At y+ � the velocity would be
approximately

u(y+ �)≈ u(y)+ �∂u
∂y

while at y− �,
u(y− �)≈ u(y)− �∂u

∂y

Prandtl postulated that the turbulent fluctuation u′ is proportional to the mean of the above
two quantities, or

u′ ≈ �∂u
∂y

[5-61]

The distance � is called the Prandtl mixing length. Prandtl also postulated that v′ would be
of the same order of magnitude as u′ so that the turbulent-shear stress of Equation (5-60)
could be written

τt = −ρu′v′ = ρ�2
(
∂u

∂y

)2

= ρεM ∂u
∂y

[5-62]

The eddy viscosity εM thus becomes

εM = �2 ∂u

∂y
[5-63]

We have already noted that the eddy properties, and hence the mixing length, vary
markedly through the boundary layer. Many analysis techniques have been applied over the
years to take this variation into account. Prandtl’s hypothesis was that the mixing length is
proportional to distance from the wall, or

�=Ky [5-64]

where K is the proportionality constant. The additional assumption was made that in the
near-wall region the shear stress is approximately constant so that τt ≈ τw. When this
assumption is used along with Equation (5-64), Equation (5-62) yields

τw= ρK2y2
(
∂u

∂y

)2

Taking the square root and integrating with respect to y gives

u= 1

K

√
τw

ρ
ln y+C [5-65]

whereC is the constant of integration. Equation (5-65) matches very well with experimental
data except in the region very close to the wall, where the laminar sublayer is present. In
the sublayer the velocity distribution is essentially linear.
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246 5-8 Turbulent-Boundary-Layer Heat Transfer

Let us now quantify our earlier qualitative description of a turbulent boundary layer
by expressing the shear stress as the sum of a molecular and turbulent part:

τ

ρ
= (ν+ εM)∂u

∂y
[5-66]

The so-called universal velocity profile is obtained by introducing two nondimensional
coordinates

u+ = u√
τw/ρ

[5-67]

y+ =
√
τw/ρy

ν
[5-68]

Using these parameters and assuming τ≈ constant, we can rewrite Equation (5-66) as

du+ = dy+

1 + εM/ν [5-69]

In terms of our previous qualitative discussion, the laminar sublayer is the region where
εM ∼ 0, the buffer layer has εM ∼ ν, and the turbulent layer has εM � ν. Therefore, taking
εM = 0 in Equation (5-69) and integrating yields

u+ = y+ + c
At the wall, u+ = 0 for y+ = 0 so that c= 0 and

u+ = y+ [5-70]

is the velocity relation (a linear one) for the laminar sublayer. In the fully turbulent region
εM/ν� 1. From Equation (5-65)

∂u

∂y
= 1

K

√
τw

ρ

1

y

Substituting this relation along with Equation (5-64) into Equation (5-63) gives

εM =K
√
τw

ρ
y

or
εm

ν
=Ky+ [5-71]

Substituting this relation in Equation (5-69) for εM/ν� 1 and integrating gives

u+ = 1

K
ln y+ + c [5-72]

This same form of equation will also be obtained for the buffer region. The limits of each
region are obtained by comparing the above equations with experimental velocity measure-
ments, with the following generally accepted constants:

Laminar sublayer: 0<y+< 5 u+ = y+

Buffer layer: 5<y+< 30 u+ = 5.0 ln y+ − 3.05 [5-73]

Turbulent layer: 30<y+< 400 u+ = 2.5 ln y+ + 5.5
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The equation set (5-73) is called the universal velocity profile and matches very well
with experimental data; however, we should note once again that the constants in the equa-
tions must be determined from experimental velocity measurements. The satisfying point
is that the simple Prandtl mixing-length model yields an equation form that fits the data
so well.

Turbulent heat transfer is analogous to turbulent momentum transfer. The turbulent
momentum flux postulated by Equation (5-59) carries with it a turbulent energy fluctuation
proportional to the temperature gradient. We thus have, in analogy to Equation (5-62),

( q
A

)
turb

= −ρcpεH ∂T
∂y

[5-74]

or, for regions where both molecular and turbulent energy transport are important,

q

A
= −ρcp(α+ εH)∂T

∂y
[5-75]

Turbulent Heat Transfer Based on Fluid-Friction Analogy

Various analyses, similar to the one for the universal velocity profile above, have been
performed to predict turbulent-boundary-layer heat transfer. The analyses have met with
good success, but for our purposes the Colburn analogy between fluid friction and heat
transfer is easier to apply and yields results that are in agreement with experiment and of
simpler form.

In the turbulent-flow region, where εM � ν and εH �α, we define the turbulent Prandtl
number as

Prt = εM

εH
[5-76]

If we can expect that the eddy momentum and energy transport will both be increased
in the same proportion compared with their molecular values, we might anticipate that
heat-transfer coefficients can be calculated by Equation (5-56) with the ordinary molecular
Prandtl number used in the computation. In the turbulent core of the boundary layer the
eddy viscosity may be as high as 100 times the molecular value experienced in the laminar
sublayer, and a similar behavior is experienced for the eddy diffusivity for heat compared to
the molecular diffusivity. To account for the Prandtl number effect over the entire boundary
layer a weighted average is needed, and it turns out that use of Pr2/3 works very well and
matches with the laminar heat-transfer–fluid-friction analogy. We thus will base our cal-
culations on this analogy, and we need experimental values for Cf for turbulent boundary
layer flows to carry out these computations.

Schlichting [1] has surveyed experimental measurements of friction coefficients for
turbulent flow on flat plates. We present the results of that survey so that they may be
employed in the calculation of turbulent heat transfer with the fluid-friction–heat-transfer
analogy. The local skin-friction coefficient is given by

Cfx = 0.0592 Re−1/5
x [5-77]

for Reynolds numbers between 5 × 105 and 107.At higher Reynolds numbers from 107 to
109 the formula of Schultz-Grunow [8] is recommended:

Cfx = 0.370(log Rex)
−2.584 [5-78]
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The average-friction coefficient for a flat plate with a laminar boundary layer up to Recrit
and turbulent thereafter can be calculated from

Cf = 0.455

(log ReL)2.584
− A

ReL
ReL < 109 [5-79]

where the constant A depends on Recrit in accordance with Table 5-1. A somewhat simpler
formula can be obtained for lower Reynolds numbers as

Cf = 0.074

Re1/5
L

− A

ReL
ReL < 107 [5-80]

Table 5-1

Recrit 3 × 105 5 × 105 106 3 × 106

A 1055 1742 3340 8940

Equations (5-79) and (5-80) are in agreement within their common range of applicability,
and the one to be used in practice will depend on computational convenience.

Applying the fluid-friction analogy St Pr2/3 =Cf /2, we obtain the local turbulent heat
transfer as:

Stx Pr2/3 = 0.0296 Re−1/5
x 5 × 105<Rex < 107 [5-81]

or

Stx Pr2/3 = 0.185(log Rex)
−2.584 107<Rex < 109 [5-82]

The average heat transfer over the entire laminar-turbulent boundary layer is

St Pr2/3 = Cf

2
[5-83]

For Recrit = 5 × 105 and ReL < 107, Equation (5-80) can be used to obtain

St Pr2/3 = 0.037 Re−1/5
L − 871 Re−1

L [5-84]

Recalling that St = Nu/(ReL Pr), we can rewrite Equation (5-84) as

NuL= hL

k
= Pr1/3(0.037 Re0.8

L − 871) [5-85]

The average heat-transfer coefficient can also be obtained by integrating the local values
over the entire length of the plate. Thus,

h= 1

L

(∫ xcrit

0
hlam dx+

∫ L

xcrit

hturb dx

)

Using Equation (5-55) for the laminar portion, Recrit = 5 × 105, and Equation (5-81) for the
turbulent portion gives the same result as Equation (5-85). For higher Reynolds numbers
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the friction coefficient from Equation (5-79) may be used, so that

NuL= hL

k
= [0.228ReL(log ReL)

−2.584 − 871]Pr1/3 [5-85a]

for 107<ReL < 109 and Recrit = 5 × 105.
The reader should note that if a transition Reynolds number different from 500,000

is chosen, then Equations (5-84) and (5-85) must be changed accordingly. An alternative
equation is suggested by Whitaker [10] that may give better results with some liquids
because of the viscosity-ratio term:

NuL= 0.036 Pr0.43(Re0.8
L − 9200)

(
μ∞
μw

)1/4

[5-86]

for

0.7< Pr< 380

2 × 105<ReL < 5.5 × 106

0.26<
μ∞
μw

< 3.5

All properties exceptμw are evaluated at the free-stream temperature. For gases the viscosity
ratio is dropped and the properties are evaluated at the film temperature.

Constant Heat Flux

For constant-wall-heat flux in turbulent flow it is shown in Reference 11 that the local
Nusselt number is only about 4 percent higher than for the isothermal surface;
that is,

Nux = 1.04 Nux
]
Tw=const

[5-87]

Some more comprehensive methods of correlating turbulent-boundary-layer heat trans-
fer are given by Churchill [11].

Turbulent Heat Transfer from
Isothermal Flat Plate EXAMPLE 5-9

Air at 20◦C and 1 atm flows over a flat plate at 35 m/s. The plate is 75 cm long and is maintained
at 60◦C. Assuming unit depth in the z direction, calculate the heat transfer from the plate.

Solution
We evaluate properties at the film temperature:

Tf = 20 + 60

2
= 40◦C = 313 K

ρ= p

RT
= 1.0132 × 105

(287)(313)
= 1.128 kg/m3

μ= 1.906 × 10−5 kg/m · s

Pr = 0.7 k= 0.02723 W/m · ◦C cp= 1.007 kJ/kg · ◦C
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The Reynolds number is

ReL= ρu∞L
μ

= (1.128)(35)(0.75)

1.906 × 10−5 = 1.553 × 106

and the boundary layer is turbulent because the Reynolds number is greater than 5 × 105. Therefore,
we use Equation (5-85) to calculate the average heat transfer over the plate:

NuL= hL

k
= Pr1/3(0.037 Re0.8

L − 871)

= (0.7)1/3[(0.037)(1.553 × 106)0.8 − 871] = 2180

h= NuL
k

L
= (2180)(0.02723)

0.75
= 79.1 W/m2 · ◦C [13.9 Btu/h · ft2 · ◦F]

q=hA(Tw− T∞)= (79.1)(0.75)(60 − 20)= 2373 W [8150 Btu/h]

5-9 TURBULENT-BOUNDARY-LAYER THICKNESS
A number of experimental investigations have shown that the velocity profile in a turbulent
boundary layer, outside the laminar sublayer, can be described by a one-seventh-power
relation

u

u∞
=
(y
δ

)1/7
[5-88]

where δ is the boundary-layer thickness as before. For purposes of an integral analysis the
momentum integral can be evaluated with Equation (5-88) because the laminar sublayer is
so thin. However, the wall shear stress cannot be calculated from Equation (5-88) because
it yields an infinite value at y= 0.

To determine the turbulent-boundary-layer thickness we employ Equation (5-17) for the
integral momentum relation and evaluate the wall shear stress from the empirical relations
for skin friction presented previously. According to Equation (5-52),

τw= Cfρu
2∞

2

and so for Rex < 107 we obtain from Equation (5-77)

τw= 0.0296

(
ν

u∞x

)1/5

ρu2∞ [5-89]

Now, using the integral momentum equation for zero pressure gradient [Equation (5-17)]
along with the velocity profile and wall shear stress, we obtain

d

dx

∫ δ

0

[
1 −

(y
δ

)1/7
] (y

δ

)1/7
dy= 0.0296

(
ν

u∞x

)1/5

Integrating and clearing terms gives

dδ

dx
= 72

7
(0.0296)

(
ν

u∞

)1/5

x−1/5 [5-90]

We shall integrate this equation for two physical situations:

1. The boundary layer is fully turbulent from the leading edge of the plate.
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2. The boundary layer follows a laminar growth pattern up to Recrit = 5 × 105 and a tur-
bulent growth thereafter.

For the first case, we integrate Equation (5-89) with the condition that δ= 0 at x= 0 to
obtain

δ

x
= 0.381 Re−1/5

x [5-91]

For case 2 we have the condition

δ= δlam at xcrit = 5 × 105 ν

u∞
[5-92]

Now, δlam is calculated from the exact relation of Equation (5-21a):

δlam = 5.0xcrit(5 × 105)−1/2 [5-93]

Integrating Equation (5-89) gives

δ− δlam = 72

7
(0.0296)

(
ν

u∞

)1/5 5

4

(
x4/5 − x4/5

crit

)
[5-94]

Combining the various relations above gives

δ

x
= 0.381 Re−1/5

x − 10,256 Re−1
x [5-95]

This relation applies only for the region 5 × 105<Rex < 107.

Turbulent-Boundary-Layer Thickness EXAMPLE 5-10

Calculate the turbulent-boundary-layer thickness at the end of the plate for Example 5-9, assum-
ing that it develops (a) from the leading edge of the plate and (b) from the transition point at
Recrit = 5 × 105.

Solution
Since we have already calculated the Reynolds number as ReL= 1.553 × 106, it is a simple matter
to insert this value in Equations (5-91) and (5-95) along with x=L= 0.75 m to give

(a) δ= (0.75)(0.381)(1.553 × 106)−0.2 = 0.0165 m = 16.5 mm [0.65 in]
(b) δ= (0.75)[(0.381)(1.553 × 106)−0.2 − 10,256(1.553 × 106)−1]

= 0.0099 m = 9.9 mm [0.39 in]

The two values differ by 40 percent.

An overall perspective of the behavior of the local and average heat-transfer coeffi-
cients is indicated in Figure 5-13. The fluid is atmospheric air flowing across an isothermal
flat plate at u∞ = 30 m/s, and the calculations were made with Equations (5-55), (5-81), and
(5-85), which assume a value of Recrit = 5 × 105. The corresponding value of xcrit is
0.2615 m and the plate length is 5.23 m at Re = 107. The corresponding boundary-layer
thickness is plotted in Figure 5-14. As we have noted before, the heat-transfer coefficient
varies inversely with the boundary-layer thickness, and an increase in heat transfer is expe-
rienced when turbulence begins.
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Figure 5-13 Local and average heat-transfer coefficient for atmospheric airflow over
isothermal flat plate at u∞ = 30 m/s (a) semilog scale (b) log scale.
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Figure 5-14 Boundary-layer thickness for atmospheric air at u∞ = 30 m/s.

10

100

0.001

0.01

0.1

1

10

100 1000 104

Rex

105 106 107

B
ou

nd
ar

y-
la

ye
r 

th
ic

kn
es

s,
 m

m

5-10 HEAT TRANSFER IN LAMINAR TUBE FLOW
Consider the tube-flow system in Figure 5-15. We wish to calculate the heat transfer under
developed flow conditions when the flow remains laminar. The wall temperature is Tw, the
radius of the tube is ro, and the velocity at the center of the tube is u0. It is assumed that
the pressure is uniform at any cross section. The velocity distribution may be derived by
considering the fluid element shown in Figure 5-16. The pressure forces are balanced by
the viscous-shear forces so that

πr2 dp= τ2πr dx= 2πrμ dx
du

dr

or

du= 1

2μ
r
dp

dx
dr

Figure 5-15 Control volume for energy analysis in tube flow.

+

x

q

r0

dx

dr

qr

qr+dr 
(2πr dr)ucpT
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254 5-10 Heat Transfer in Laminar Tube Flow

Figure 5-16 Force balance on fluid element in tube flow.

r

(2πrdx)τ π

(p + dp)( r2)πp(πr2)π

dx

and

u= 1

4μ

dp

dx
r2 + const [5-96]

With the boundary condition

u= 0 at r= ro
u= 1

4μ

dp

dx
(r2 − r2

o)

the velocity at the center of the tube is given by

u0 = − r2
o

4μ

dp

dx
[5-97]

so that the velocity distribution may be written

u

u0
= 1 − r2

r2
o

[5-98]

which is the familiar parabolic distribution for laminar tube flow. Now consider the heat-
transfer process for such a flow system. To simplify the analysis, we assume that there is a
constant heat flux at the tube wall; that is,

dqw

dx
= 0

The heat flow conducted into the annular element is

dqr = −k2πr dx
∂T

∂r

and the heat conducted out is

dqr+dr = −k2π(r+ dr) dx
(
∂T

∂r
+ ∂2T

∂r2
dr

)

The net heat convected out of the element is

2πr dr ρcpu
∂T

∂x
dx

The energy balance is

Net energy convected out = net heat conducted in

or, neglecting second-order differentials,

rρcpu
∂T

∂x
dx dr= k

(
∂T

∂r
+ r ∂

2T

∂r2

)
dx dr
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which may be rewritten
1

ur

∂

∂r

(
r
∂T

∂r

)
= 1

α

∂T

∂x
[5-99]

We assume that the heat flux at the wall is constant, so that the average fluid temperature
must increase linearly with x, or

∂T

∂x
= const

This means that the temperature profiles will be similar at various x distances along the
tube. The boundary conditions on Equation (5-98) are

∂T

∂r
= 0 at r= 0

k
∂T

∂r

]
r=ro

= qw= const

To obtain the solution to Equation (5-99), the velocity distribution given by Equation (5-98)
must be inserted. It is assumed that the temperature and velocity fields are independent;
that is, a temperature gradient does not affect the calculation of the velocity profile. This is
equivalent to specifying that the properties remain constant in the flow. With the substitution
of the velocity profile, Equation (5-99) becomes

∂

∂r

(
r
∂T

∂r

)
= 1

α

∂T

∂x
u0

(
1 − r2

r2
o

)
r

Integration yields

r
∂T

∂r
= 1

α

∂T

∂x
u0

(
r2

2
− r4

4r2
o

)
+C1

and a second integration gives

T = 1

α

∂T

∂x
u0

(
r2

4
− r4

16r2
o

)
+C1 ln r+C2

Applying the first boundary condition, we find that

C1 = 0

The second boundary condition has been satisfied by noting that the axial temperature
gradient ∂T/∂x is constant. The temperature distribution may finally be written in terms of
the temperature at the center of the tube:

T = Tc at r= 0 so that C2 = Tc

T − Tc = 1

α

∂T

∂x

u0r
2
o

4

[(
r

ro

)2

− 1

4

(
r

ro

)4
]

[5-100]

The Bulk Temperature

In tube flow the convection heat-transfer coefficient is usually defined by

Local heat flux = q′′ =h(Tw− Tb) [5-101]
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256 5-10 Heat Transfer in Laminar Tube Flow

where Tw is the wall temperature and Tb is the so-called bulk temperature, or energy-average
fluid temperature across the tube, which may be calculated from

Tb = T =
∫ ro

0 ρ2πr dr ucpT∫ ro
0 ρ2πr dr ucp

[5-102]

The reason for using the bulk temperature in the definition of heat-transfer coefficients for
tube flow may be explained as follows. In a tube flow there is no easily discernible free-
stream condition as is present in the flow over a flat plate. Even the centerline temperature
Tc is not easily expressed in terms of the inlet flow variables and the heat transfer. For most
tube- or channel-flow heat-transfer problems, the topic of central interest is the total energy
transferred to the fluid in either an elemental length of the tube or over the entire length
of the channel. At any x position, the temperature that is indicative of the total energy of
the flow is an integrated mass-energy average temperature over the entire flow area. The
numerator of Equation (5-102) represents the total energy flow through the tube, and the
denominator represents the product of mass flow and specific heat integrated over the flow
area. The bulk temperature is thus representative of the total energy of the flow at the
particular location. For this reason, the bulk temperature is sometimes referred to as the
“mixing cup” temperature, since it is the temperature the fluid would assume if placed in a
mixing chamber and allowed to come to equilibrium. For the temperature distribution given
in Equation (5-100), the bulk temperature is a linear function of x because the heat flux at
the tube wall is constant. Calculating the bulk temperature from Equation (5-102), we have

Tb = Tc + 7

96

u0r
2
o

α

∂T

∂x
[5-103]

and for the wall temperature

Tw= Tc + 3

16

u0r
2
o

α

∂T

∂x
[5-104]

The heat-transfer coefficient is calculated from

q=hA(Tw− Tb)= kA
(
∂T

∂r

)
r=ro

[5-105]

h= k(∂T/∂r)r=ro
Tw− Tb

The temperature gradient is given by

∂T

∂r

]
r=ro

= u0

α

∂T

∂x

(
r

2
− r3

4r2
o

)
r=ro

= u0ro

4α

∂T

∂x
[5-106]

Substituting Equations (5-103), (5-104), and (5-106) in Equation (5-105) gives

h= 24

11

k

ro
= 48

11

k

do

Expressed in terms of the Nusselt number, the result is

Nud = hdo

k
= 4.364 [5-107]

which is in agreement with an exact calculation by Sellars, Tribus, and Klein [3], that con-
siders the temperature profile as it develops. Some empirical relations for calculating heat
transfer in laminar tube flow will be presented in Chapter 6.

admin
강조
1) This is for q"=constant
2) For T(w)= constant:
    Nu(d)=3.657 
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We may remark at this time that when the statement is made that a fluid enters a tube
at a certain temperature, it is the bulk temperature to which we refer. The bulk temperature
is used for overall energy balances on systems.

5-11 TURBULENT FLOW IN A TUBE
The developed velocity profile for turbulent flow in a tube will appear as shown in
Figure 5-17. A laminar sublayer, or “film,” occupies the space near the surface, while
the central core of the flow is turbulent. To determine the heat transfer analytically for this
situation, we require, as usual, a knowledge of the temperature distribution in the flow. To
obtain this temperature distribution, the analysis must take into consideration the effect of
the turbulent eddies in the transfer of heat and momentum. We shall use an approximate
analysis that relates the conduction and transport of heat to the transport of momentum in
the flow (i.e., viscous effects).

The heat flow across a fluid element in laminar flow may be expressed by

q

A
= −k dT

dy

Dividing both sides of the equation by ρcp,

q

ρcpA
= −α dT

dy

It will be recalled that α is the molecular diffusivity of heat. In turbulent flow one might
assume that the heat transport could be represented by

q

ρcpA
= −(α+ εH)dT

dy
[5-108]

where εH is an eddy diffusivity of heat.
Equation (5-108) expresses the total heat conduction as a sum of the molecular conduc-

tion and the macroscopic eddy conduction. In a similar fashion, the shear stress in turbulent
flow could be written

τ

ρ
=
(
μ

ρ
+ εM

)
du

dy
= (ν+ εM)du

dy
[5-109]

where εM is the eddy diffusivity for momentum. We now assume that the heat and momen-
tum are transported at the same rate; that is, εM = εH and ν=α, or Pr = 1.

Dividing Equation (5-108) by Equation (5-109) gives
q

cpAτ
du= −dT

An additional assumption is that the ratio of the heat transfer per unit area to the shear
stress is constant across the flow field. This is consistent with the assumption that heat and

Figure 5-17 Velocity profile in turbulent tube flow.

Laminar
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u
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258 5-11 Turbulent Flow in a Tube

momentum are transported at the same rate. Thus

q

Aτ
= const = qw

Awτw
[5-110]

Then, integrating Equation (5-109) between wall conditions and mean bulk conditions gives

qw

Awτwcp

∫ u=um

u=0
du=

∫ Tb

Tw

−dT

qwum

Awτwcp
= Tw− Tb [5-111]

But the heat transfer at the wall may be expressed by

qw=hAw(Tw− Tb)
and the shear stress may be calculated from

τw= �p(πd2
o)

4πdoL
= �p

4

do

L

The pressure drop may be expressed in terms of a friction factor f by

�p= f L
do
ρ
u2
m

2
[5-112]

so that

τw= f

8
ρu2

m [5-113]

Substituting the expressions for τw and qw in Equation (5-111) gives

St = h

ρcpum
= Nud

Red Pr
= f

8
[5-114]

Equation (5-114) is called the Reynolds analogy for tube flow. It relates the heat-transfer
rate to the frictional loss in tube flow and is in fair agreement with experiments when used
with gases whose Prandtl numbers are close to unity. (Recall that Pr = 1 was one of the
assumptions in the analysis.)

An empirical formula for the turbulent-friction factor up to Reynolds numbers of about
2 × 105 for the flow in smooth tubes is

f = 0.316

Re1/4
d

[5-115]

Inserting this expression in Equation (5-113) gives

Nud
Red Pr

= 0.0395 Re−1/4
d

or
Nud = 0.0395 Re3/4

d [5-116]

since we assumed the Prandtl number to be unity. This derivation of the relation for turbulent
heat transfer in smooth tubes is highly restrictive because of the Pr ≈ 1.0 assumption. The
heat-transfer–fluid-friction analogy of Section 5-7 indicated a Prandtl-number dependence

admin
텍스트에 대한 주석
For Flat plate flow:
St(x) (Pr)2/3 = 1/2 Cf(x)

Thus, Cf(x)=f/4
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of Pr2/3 for the flat-plate problem and, as it turns out, this dependence works fairly well for
turbulent tube flow. Equations (5-114) and (5-116) may be modified by this factor to yield

St Pr2/3 = f

8
[5-114a]

Nud = 0.0395 Re3/4
d Pr1/3 [5-116a]

As we shall see in Chapter 6, Equation (5-116a) predicts heat-transfer coefficients that
are somewhat higher than those observed in experiments. The purpose of the discussion at
this point has been to show that one may arrive at a relation for turbulent heat transfer in a
fairly simple analytical fashion. As we have indicated earlier, a rigorous development of the
Reynolds analogy between heat transfer and fluid friction involves considerations beyond
the scope of our discussion, and the simple path of reasoning chosen here is offered for the
purpose of indicating the general nature of the physical processes.

For calculation purposes, a more correct relation to use for turbulent flow in a smooth
tube is Equation (6-4a), which we list here for comparison:

Nud = 0.023 Re0.8
d Pr0.4 [6-4a]

All properties in Equation (6-4a) are evaluated at the bulk temperature.

5-12 HEAT TRANSFER IN HIGH-SPEED FLOW
Our previous analysis of boundary-layer heat transfer (Section 5-6) neglected the effects
of viscous dissipation within the boundary layer. When the free-stream velocity is very
high, as in high-speed aircraft, these dissipation effects must be considered. We begin our
analysis by considering the adiabatic case, i.e., a perfectly insulated wall. In this case the wall
temperature may be considerably higher than the free-stream temperature even though no
heat transfer takes place. This high temperature results from two situations: (1) the increase
in temperature of the fluid as it is brought to rest at the plate surface while the kinetic energy
of the flow is converted to internal thermal energy, and (2) the heating effect due to viscous
dissipation. Consider the first situation. The kinetic energy of the gas is converted to thermal
energy as the gas is brought to rest, and this process is described by the steady-flow energy
equation for an adiabatic process:

i0 = i∞ + 1

2gc
u2∞ [5-117]

where i0 is the stagnation enthalpy of the gas. This equation may be written in terms of
temperature as

cp(T0 − T∞)= 1

2gc
u2∞

where T0 is the stagnation temperature and T∞ is the static free-stream temperature.
Expressed in terms of the free-stream Mach number, it is

T0

T∞
= 1 + γ − 1

2
M2∞ [5-118]

where M∞ is the Mach number, defined as M∞ = u∞/a, and a is the acoustic velocity,
which for an ideal gas may be calculated with

a=√γgcRT [5-119]

where R is the gas constant for the particular gas.
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260 5-12 Heat Transfer in High-Speed Flow

In the actual case of a boundary-layer flow problem, the fluid is not brought to rest
reversibly because the viscous action is basically an irreversible process in a thermodynamic
sense. In addition, not all the free-stream kinetic energy is converted to thermal energy—
part is lost as heat, and part is dissipated in the form of viscous work. To take into account
the irreversibilities in the boundary-layer flow system, a recovery factor is defined by

r= Taw− T∞
T0 − T∞

[5-120]

where Taw is the actual adiabatic wall temperature and T∞ is the static temperature of
the free stream. The recovery factor may be determined experimentally, or, for some flow
systems, analytical calculations may be made.

The boundary-layer energy equation

u
∂T

∂x
+ v∂T

∂y
=α∂

2T

∂y2
+ μ

ρcp

(
∂u

∂y

)2

has been solved for the high-speed-flow situation, taking into account the viscous-heating
term. Although the complete solution is somewhat tedious, the final results are remarkably
simple. For our purposes we present only the results and indicate how they may be applied.
The reader is referred to Appendix B for an exact solution to Equation (5-22). An excellent
synopsis of the high-speed heat-transfer problem is given in a report by Eckert [4]. Some
typical boundary-layer temperature profiles for an adiabatic wall in high-speed flow are
given in Figure B-3.

The essential result of the high-speed heat-transfer analysis is that heat-transfer rates
may generally be calculated with the same relations used for low-speed incompressible
flow when the average heat-transfer coefficient is redefined with the relation

q=hA(Tw− Taw) [5-121]

Notice that the difference between the adiabatic wall temperature and the actual wall tem-
perature is used in the definition so that the expression will yield a value of zero heat flow
when the wall is at the adiabatic wall temperature. For gases with Prandtl numbers near
unity, the following relations for the recovery factor have been derived:

Laminar flow: r= Pr1/2 [5-122]

Turbulent flow: r= Pr1/3 [5-123]

These recovery factors may be used in conjunction with Equation (5-120) to obtain the
adiabatic wall temperature.

In high-velocity boundary layers substantial temperature gradients may occur, and
there will be correspondingly large property variations across the boundary layer. The
constant-property heat-transfer equations may still be used if the properties are introduced
at a reference temperature T* as recommended by Eckert:

T* = T∞ + 0.50(Tw− T∞)+ 0.22(Taw− T∞) [5-124]

The analogy between heat transfer and fluid friction [Equation (5-56)] may also be used
when the friction coefficient is known. Summarizing the relations used for high-speed heat-
transfer calculations:

Laminar boundary layer (Rex < 5 × 105) :
St∗x Pr*2/3 = 0.332 Re∗−1/2

x [5-125]
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Turbulent boundary layer (5 × 105<Rex < 107) :
St∗x Pr*2/3 = 0.0296 Re∗−1/5

x [5-126]

Turbulent boundary layer (107<Rex < 109) :
St∗x Pr*2/3 = 0.185(log Re∗

x)
−2.584 [5-127]

The superscript * in the above equations indicates that the properties are evaluated at the
reference temperature given by Equation (5-124).

To obtain an average heat-transfer coefficient, the above expressions must be inte-
grated over the length of the plate. If the Reynolds number falls in a range such that
Equation (5-127) must be used, the integration cannot be expressed in closed form, and a
numerical integration must be performed. Care must be taken in performing the integration
for the high-speed heat-transfer problem since the reference temperature is different for the
laminar and turbulent portions of the boundary layer. This results from the different value
of the recovery factor used for laminar and turbulent flow as given by Equations (5-122)
and (5-123).

When very high flow velocities are encountered, the adiabatic wall temperature may
become so high that dissociation of the gas will take place and there will be a very wide
variation of the properties in the boundary layer. Eckert [4] recommends that these prob-
lems be treated on the basis of a heat-transfer coefficient defined in terms of enthalpy
difference:

q=hiA(iw− iaw) [5-128]

The enthalpy recovery factor is then defined as

ri= iaw− i∞
i0 − i∞ [5-129]

where iaw is the enthalpy at the adiabatic wall conditions. The same relations as before
are used to calculate the recovery factor and heat-transfer except that all properties are
evaluated at a reference enthalpy i* given by

i* = i∞ + 0.5(iw− i∞)+ 0.22(iaw− i∞) [5-130]

The Stanton number is redefined as

Sti= hi

ρu∞
[5-131]

This Stanton number is then used in Equation (5-125), (5-126), or (5-127) to calculate the
heat-transfer coefficient. When calculating the enthalpies for use in the above relations,
the total enthalpy must be used; that is chemical energy of dissociation as well as internal
thermal energy must be included. The reference-enthalpy method has proved successful for
calculating high-speed heat-transfer with an accuracy of better than 10 percent.

High-Speed Heat Transfer for a Flat Plate EXAMPLE 5-11

A flat plate 70 cm long and 1.0 m wide is placed in a wind tunnel where the flow conditions
are M= 3, p= 1

20 atm, and T = −40◦C. How much cooling must be used to maintain the plate
temperature at 35◦C?
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262 5-12 Heat Transfer in High-Speed Flow

Solution
We must consider the laminar and turbulent portions of the boundary layer separately because the
recovery factors, and hence the adiabatic wall temperatures, used to establish the heat flow will
be different for each flow regime. It turns out that the difference is rather small in this problem,
but we shall follow a procedure that would be used if the difference were appreciable, so that the
general method of solution may be indicated. The free-stream acoustic velocity is calculated from

a=√γgcRT∞ = [(1.4)(1.0)(287)(233)]1/2 = 306 m/s [1003 ft/s]

so that the free-stream velocity is

u∞ = (3)(306)= 918 m/s [3012 ft/s]

The maximum Reynolds number is estimated by making a computation based on properties eval-
uated at free-stream conditions:

ρ∞ = (1.0132 × 105)( 1
20 )

(287)(233)
= 0.0758 kg/m3 [4.73 × 10−3 lbm/ft

3]
μ∞ = 1.434 × 10−5 kg/m · s [0.0347 lbm/h · ft]

ReL,∞ = (0.0758)(918)(0.70)

1.434 × 10−5 = 3.395 × 106

Thus we conclude that both laminar and turbulent-boundary-layer heat transfer must be considered.
We first determine the reference temperatures for the two regimes and then evaluate properties at
these temperatures.

Laminar portion

T0 = T∞
(

1 + γ − 1

2
M2∞

)
= (233)[1 + (0.2)(3)2] = 652 K

Assuming a Prandtl number of about 0.7, we have

r= Pr1/2 = (0.7)1/2 = 0.837

r= Taw− T∞
T0 − T∞

= Taw− 233

652 − 233

and Taw= 584 K = 311◦C [592◦F]. Then the reference temperature from Equation (5-123) is

T* = 233 + (0.5)(308 − 233)+ (0.22)(584 − 233)= 347.8 K

Checking the Prandtl number at this temperature, we have

Pr* = 0.697

so that the calculation is valid. If there were an appreciable difference between the value of Pr*
and the value used to determine the recovery factor, the calculation would have to be repeated
until agreement was reached.

The other properties to be used in the laminar heat-transfer analysis are

ρ* = (1.0132 × 105)(1/20)

(287)(347.8)
= 0.0508 kg/m3

μ* = 2.07 × 10−5 kg/m · s

k* = 0.03 W/m · ◦C [0.0173 Btu/h · ft · ◦F]
cp* = 1.009 kJ/kg · ◦C
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Turbulent portion

Assuming Pr = 0.7 gives

r= Pr1/3 = 0.888 = Taw− T∞
T0 − T∞

= Taw− 233

652 − 233

Taw= 605 K = 332◦C

T* = 233 + (0.5)(308 − 233)+ (0.22)(605 − 233)= 352.3 K

Pr* = 0.695

The agreement between Pr* and the assumed value is sufficiently close. The other properties to
be used in the turbulent heat-transfer analysis are

ρ* = (1.0132 × 105)(1/20)

(287)(352.3)
= 0.0501 kg/m3

μ* = 2.09 × 10−5 kg/m · s

k* = 0.0302 W/m · ◦C cp* = 1.009 kJ/kg · ◦C

Laminar heat transfer

We assume

Re∗
crit = 5 × 105 = ρ*u∞xc

μ*

xc = (5 × 105)(2.07 × 10−5)

(0.0508)(918)
= 0.222 m

Nu* = hxc

k*
= 0.664

(
Re∗

crit
)1/2 Pr*1/3

= (0.664)(5 × 105)1/2(0.697)1/3 = 416.3

h= (416.3)(0.03)

0.222
= 56.25 W/m2 · ◦C [9.91 Btu/h · ft2 · ◦F]

This is the average heat-transfer coefficient for the laminar portion of the boundary layer, and the
heat transfer is calculated from

q= hA(Tw− Taw)
= (56.26)(0.222)(308 − 584)

= −3445 W [−11,750 Btu/h]
so that 3445 W of cooling is required in the laminar region of the plate per meter of depth in the
z direction.

Turbulent heat transfer

To determine the turbulent heat transfer we must obtain an expression for the local heat-transfer
coefficient from

St*x Pr*2/3 = 0.0296 Re∗−1/5
x

and then integrate from x= 0.222 m to x= 0.7 m to determine the total heat transfer:

hx= Pr*−2/3ρ*u∞cp(0.0296)

(
ρ*u∞x
μ*

)−1/5

Inserting the numerical values for the properties gives

hx= 94.34x−1/5
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The average heat-transfer coefficient in the turbulent region is determined from

h=
∫ 0.7
0.222 hx dx∫ 0.7

0.222 dx
= 111.46 W/m2 · ◦C [19.6 Btu/h · ft2 · ◦F]

Using this value we may calculate the heat transfer in the turbulent region of the flat plate:

q=hA(Tw− Taw)
= (111.46)(0.7 − 0.222)(308 − 605)

= −15,823 W [−54,006 Btu/h]

The total amount of cooling required is the sum of the heat transfers for the laminar and turbulent
portions:

Total cooling = 3445 + 15,823 = 19,268 W [65,761 Btu/h]
These calculations assume unit depth of 1 m in the z direction.

5-13 SUMMARY
Most of this chapter has been concerned with flow over flat plates and the associated heat
transfer. For convenience of the reader we have summarized the heat-transfer, boundary-
layer thickness, and friction-coefficient equations in Table 5-2 along with the restrictions
that apply. Our presentation of convection heat transfer is incomplete at this time and will be
developed further in Chapters 6 and 7. Even so, we begin to see the structure of a procedure
for solution of convection problems:

1. Establish the geometry of the situation; for now we are mainly restricted to flow over
flat plates.

2. Determine the fluid involved and evaluate the fluid properties. This will usually be at
the film temperature.

3. Establish the boundary conditions (i.e., constant temperature or constant heat flux).
4. Establish the flow regime as determined by the Reynolds number.
5. Select the appropriate equation, taking into account the flow regime and any fluid prop-

erty restrictions which may apply.
6. Calculate the value(s) of the convection heat-transfer coefficient and/or heat transfer.

At the conclusion of Chapter 7 we shall give a general procedure for all convection problems
and the information contained in Table 5-2 will comprise one ingredient in the overall recipe.
The interested reader may wish to consult Section 7-14 and Figure 7-15 for a preview of
this information and some perspective of the way the material in the present chapter fits in.

REVIEW QUESTIONS
1. What is meant by a hydrodynamic boundary level?
2. Define the Reynolds number. Why is it important?
3. What is the physical mechanism of viscous action?
4. Distinguish between laminar and turbulent flow in a physical sense.
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Table 5-2 Summary of equations for flow over flat plates. Properties evaluated at Tf = (Tw+ T∞)/2 unless otherwise noted.

Flow regime Restrictions Equation Equation number

Heat transfer

Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.332 Pr1/3Re1/2
x (5-44)

0.6< Pr< 50

Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.3387 Re1/2
x Pr1/3[

1 +
(

0.0468

Pr

)2/3
]1/4 (5-51)

Rex Pr> 100

Laminar, local qw= const, Rex < 5 × 105, Nux= 0.453 Re1/2
x Pr1/3 (5-48)

0.6< Pr< 50

Laminar, local qw= const, Rex < 5 × 105 Nux= 0.4637 Re1/2
x Pr1/3[

1 +
(

0.0207

Pr

)2/3
]1/4 (5-51)

Laminar, average ReL < 5 × 105, Tw= const NuL= 2 Nux=L= 0.664 Re1/2
L Pr1/3 (5-46)

Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.564(Rex Pr)1/2

Pr � 1 (liquid metals)

Laminar, local Tw= const, starting at Nux= 0.332 Pr1/3 Re1/2
x

[
1 − ( x0

x

)3/4]−1/3
(5-43)

x= x0, Rex < 5 × 105,
0.6< Pr< 50

Turbulent, local Tw= const, 5 × 105<Rex < 107 Stx Pr2/3 = 0.0296 Re−0.2
x (5-81)

Turbulent, local Tw= const, 107<Rex < 109 Stx Pr2/3 = 0.185(log Rex)−2.584 (5-82)
Turbulent, local qw= const, 5 × 105<Rex < 107 Nux= 1.04 NuxTw=const (5-87)
Laminar-turbulent, Tw= const, Rex < 107, St Pr2/3 = 0.037 Re−0.2

L − 871 Re−1
L (5-84)

average Recrit = 5 × 105 NuL= Pr1/3(0.037 Re0.8
L − 871) (5-85)

Laminar-turbulent, Tw= const, Rex < 107, NuL= 0.036 Pr0.43(Re0.8
L − 9200)

(
μ∞
μw

)1/4
(5-86)

average liquids, μ at T∞,
μw at Tw

High-speed flow Tw= const, Same as for low-speed flow with
q=hA(Tw− Taw) properties evaluated at

T ∗ = T∞ + 0.5(Tw− T∞)+ 0.22(Taw− T∞) (5-124)
r= (Taw− T∞)/(To− T∞)
= recovery factor
= Pr1/2 (laminar)
= Pr1/3 (turbulent)

Boundary-layer thickness

Laminar Rex < 5 × 105 δ
x = 5.0 Re−1/2

x (5-21a)

Turbulent Rex < 107, δ
x = 0.381 Re−1/5

x (5-91)
δ= 0 at x= 0

Turbulent 5 × 105<Rex < 107, δ
x = 0.381 Re−1/5

x − 10,256 Re−1
x (5-95)

Recrit = 5 × 105,
δ= δlam at Recrit

Friction coefficients

Laminar, local Rex < 5 × 105 Cfx= 0.332 Re−1/2
x (5-54)

Turbulent, local 5 × 105<Rex < 107 Cfx= 0.0592 Re−1/5
x (5-77)

Turbulent, local 107<Rex < 109 Cfx= 0.37(log Rex)−2.584 (5-78)

Turbulent, average Recrit <Rex < 109 Cf = 0.455
(log ReL)2.584 − A

ReL
(5-79)

A from Table 5-1




